Controllable Phase Transformation and Enhanced Photocatalytic Performance of Nano-TiO2 by Using Oxalic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of Nano-TiO2 Samples
2.3. Photocatalytic Activity Measurements
2.4. Characterization of Nano-TiO2 Samples
3. Results and Discussion
3.1. The Influence of OA on the Morphology of the Precursors
3.2. Controllable Phase Transformation of Nano-TiO2 Crystals Regulated by OA
3.3. Analysis of Photocatalytic Performance of TiO2 Regulated by OA
3.4. The Mechanism of the Enhanced Catalytic Performance of TiO2
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, X.; Zhou, Q.; Xia, Y.; Wang, J.; Chen, H.; Xu, Q.; Liu, J.; Feng, W.; Chen, S. Preparation and characterization of Cu-doped TiO2 nanomaterials with anatase/rutile/brookite triphasic structure and their photocatalytic activity. J. Mater. Sci. Mater. Electron. 2021, 32, 21511–21524. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, J.; Jiang, S.; Zhang, X.; Bi, F.; Yang, Y.; Wang, Y.; Wang, Z. Enhanced photocatalytic degradation of gaseous toluene and liquidus tetracycline by anatase/rutile titanium dioxide with heterophase junction derived from materials of Institut Lavoisier-125(Ti): Degradation pathway and mechanism studies. J. Colloid Interface Sci. 2021, 588, 122–137. [Google Scholar] [CrossRef] [PubMed]
- Hunge, Y.; Yadav, A.; Kang, S.; Kim, H. Photocatalytic degradation of tetracycline antibiotics using hydrothermally synthesized two-dimensional molybdenum disulfide/titanium dioxide composites. J. Colloid Interface Sci. 2022, 606, 454–463. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Zhang, M.; Zhang, M.; Wang, C.; Liu, Y.; Fan, X.; Li, H. Characterization of a Novel, Cold-Adapted, and Thermostable Laccase-Like Enzyme With High Tolerance for Organic Solvents and Salt and Potent Dye Decolorization Ability, Derived From a Marine Metagenomic Library. Front. Microbiol. 2018, 9, 2998. [Google Scholar] [CrossRef]
- Ali, H. Biodegradation of Synthetic Dyes—A Review. Water Air Soil Pollut. 2010, 213, 251–273. [Google Scholar] [CrossRef]
- Mirzaei, R.; Yunesian, M.; Nasseri, S.; Gholami, M.; Jalilzadeh, E.; Shoeibi, S.; Mesdaghinia, A. Occurrence and fate of most prescribed antibiotics in different water environments of Tehran, Iran. Sci. Total Environ. 2018, 619–620, 446–459. [Google Scholar] [CrossRef]
- Li, S.; Shi, W.; Liu, W.; Li, H.; Zhang, W.; Hu, J.; Ke, Y.; Sun, W.; Ni, J. A duodecennial national synthesis of antibiotics in China’s major rivers and seas (2005–2016). Sci. Total Environ. 2018, 615, 906–917. [Google Scholar] [CrossRef]
- Hu, Y.; Yan, X.; Shen, Y.; Di, M.; Wang, J. Antibiotics in surface water and sediments from Hanjiang River, Central China: Occurrence, behavior and risk assessment. Ecotoxicol. Environ. Saf. 2018, 157, 150–158. [Google Scholar] [CrossRef]
- Dinh, Q.T.; Alliot, F.; Moreau-Guigon, E.; Eurin, J.; Chevreuil, M.; Labadie, P. Measurement of trace levels of antibiotics in river water using on-line enrichment and triple-quadrupole LC-MS/MS. Talanta 2011, 85, 1238–1245. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, L.; Xiang, Y.; He, Y.; Song, G.; Wang, X.; Liang, F. A novel Zn–TiO2/CaSiO2 nanoporous material on rice husk for photocatalytic applications under visible light. Desalin. Water Treat. 2015, 57, 9660–9670. [Google Scholar] [CrossRef]
- Zhang, M.h.; Zhao, Q.l.; Bai, X.; Ye, Z.f. Adsorption of organic pollutants from coking wastewater by activated coke. Colloids Surface. A 2010, 362, 140–146. [Google Scholar] [CrossRef]
- Guo, X.; Xie, C.; Wang, L.; Li, Q.; Wang, Y. Biodegradation of persistent environmental pollutants by Arthrobacter sp. Environ. Sci. Pollut. Res. Int. 2019, 26, 8429–8443. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, Q.; Feng, Z.; Li, M.; Li, C. Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew. Chem. Int. Ed. Engl. 2008, 47, 1766–1769. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, X.; Wang, L.; Yang, Y.; Jiao, L.; Wu, Z.; Gao, X.; Cheng, S.; Lin, M. A novel nano-sized red phosphorus decorated borocarbonitride heterojunction with enhanced photocatalytic performance for tetracycline degradation. Environ. Sci. Nano 2022, 9, 1869–1878. [Google Scholar] [CrossRef]
- Zhang, H.; Meng, D.; Fu, B.; Fan, H.; Cai, R.; Fu, P.P.; Wu, X. Separation of charge carriers and generation of reactive oxygen species by TiO2 nanoparticles mixed with differently-coated gold nanorods under light irradiation. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2019, 37, 81–98. [Google Scholar] [CrossRef]
- Yang, L.; Gong, M.; Jiang, X.; Yin, D.; Qin, X.; Zhao, B.; Ruan, W. Investigation on SERS of different phase structure TiO2 nanoparticles. J. Raman Spectrosc. 2015, 46, 287–292. [Google Scholar] [CrossRef]
- Wang, Q.; Lian, J.; Bai, Y.; Hui, J.; Zhong, J.; Li, J.; An, N.; Yu, J.; Wang, F. Photocatalytic activity of hydrogen production from water over TiO2 with different crystal structures. Mat. Sci. Semicon. Proc. 2015, 40, 418–423. [Google Scholar] [CrossRef]
- Dedman, C.J.; King, A.M.; Christie-Oleza, J.A.; Davies, G.L. Environmentally relevant concentrations of titanium dioxide nanoparticles pose negligible risk to marine microbes. Environ. Sci. Nano 2021, 8, 1236–1255. [Google Scholar] [CrossRef]
- Hunge, Y.; Mahadik, M.; Bulakhe, R.; Yadav, S.; Shim, J.; Moholkar, A.; Bhosale, C.H. Oxidative degradation of benzoic acid using spray deposited WO3/TiO2 thin films. J. Mater. Sci. 2017, 28, 17976–17984. [Google Scholar] [CrossRef]
- Cao, Y.; Li, X.; Bian, Z.; Fuhr, A.; Zhang, D.; Zhu, J. Highly photocatalytic activity of brookite/rutile TiO2 nanocrystals with semi-embedded structure. Appl. Catal. B Environ. 2016, 180, 551–558. [Google Scholar] [CrossRef]
- Lai, L.-L.; Wen, W.; Wu, J.-M. Room-Temperature Hydrolysis of Potassium Titanyl Oxalate and Water-Assisted Crystallization for TiO2 with High Photocatalytic Activity. ChemistrySelect 2017, 2, 5025–5031. [Google Scholar] [CrossRef]
- Gnaser, H.; Lösch, J.; Orendorz, A.; Ziegler, C. Temperature-dependent grain growth and phase transformation in mixed anatase-rutile nanocrystalline TiO2 films. Phys. Status Solidi A 2011, 208, 1635–1640. [Google Scholar] [CrossRef]
- Zhou, X. TiO2-Supported Single-Atom Catalysts for Photocatalytic Reactions. Acta Phys. Chim. Sin. 2020, 37, 2008064. [Google Scholar] [CrossRef]
- Zhu, X.; Zhu, R.; Pei, L.; Liu, H.; Xu, L.; Wang, J.; Feng, W.; Jiao, Y.; Zhang, W. Fabrication, characterization, and photocatalytic activity of anatase/rutile/SnO2 nanocomposites. J. Mater. Sci. Mater. Electron. 2019, 30, 21210–21218. [Google Scholar] [CrossRef]
- Zhu, X.; Qin, F.; Xia, Y.; Yang, D.; Feng, W.; Jiao, Y. Three-Phase Mixed Titania Powder Modified by Silver and Silver Chloride with Enhanced Photocatalytic Activity under UV-Visible Light. Nanomaterials 2022, 12, 1599. [Google Scholar] [CrossRef]
- Di Paola, A.; Bellardita, M.; Palmisano, L. Brookite, the Least Known TiO2 Photocatalyst. Catalysts 2013, 3, 36–73. [Google Scholar] [CrossRef]
- Dette, C.; Perez-Osorio, M.A.; Kley, C.S.; Punke, P.; Patrick, C.E.; Jacobson, P.; Giustino, F.; Jung, S.J.; Kern, K. TiO2 anatase with a bandgap in the visible region. Nano Lett. 2014, 14, 6533–6538. [Google Scholar] [CrossRef]
- Gao, C.; Wei, T.; Zhang, Y.; Song, X.; Huan, Y.; Liu, H.; Zhao, M.; Yu, J.; Chen, X. A Photoresponsive Rutile TiO2 Heterojunction with Enhanced Electron-Hole Separation for High-Performance Hydrogen Evolution. Adv. Mater. 2019, 31, e1806596. [Google Scholar] [CrossRef]
- Lu, C.; Huang, Y.; Huang, J.; Chang, C.; Wu, S. A Macroporous TiO2 Oxygen Sensor Fabricated Using Anodic Aluminium Oxide as an Etching Mask. Sensors 2010, 10, 670–683. [Google Scholar] [CrossRef]
- Hanaor, D.A.H.; Sorrell, C.C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2010, 46, 855–874. [Google Scholar] [CrossRef] [Green Version]
- Andrade-Guel, M.; Díaz-Jiménez, L.; Cortés-Hernández, D.; Cabello-Alvarado, C.; Ávila-Orta, C.; Bartolo-Pérez, P.; Gamero-Melo, P. Microwave assisted sol–gel synthesis of titanium dioxide using hydrochloric and acetic acid as catalysts. Bol. Soc. Esp. Cerám. Vidr. 2019, 58, 171–177. [Google Scholar] [CrossRef]
- Sui, L.-L.; Zhai, Y.-C.; Miao, L.-H. Recovery of titania from high titanium slag by roasting method using concentrated sulfuric acid. Rare Met. 2014, 34, 895–900. [Google Scholar] [CrossRef]
- Khosravi, K.; Hoque, M.E.; Dimock, B.; Hintelmann, H.; Metcalfe, C.D. A novel approach for determining total titanium from titanium dioxide nanoparticles suspended in water and biosolids by digestion with ammonium persulfate. Anal. Chim. Acta 2012, 713, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Xie, Y.; Cao, H.; Nawaz, F.; Zhang, S.; Wang, Y. Disparate roles of doped metal ions in promoting surface oxidation of TiO2 photocatalysis. J. Photoch. Photobiol. A 2016, 315, 59–66. [Google Scholar] [CrossRef]
- Park, J.; Moon, G.-h.; Shin, K.-O.; Kim, J. Oxalate-TiO2 complex-mediated oxidation of pharmaceutical pollutants through ligand-to-metal charge transfer under visible light. Chem. Eng. J. 2018, 343, 689–698. [Google Scholar] [CrossRef]
- Qiu, Y.; Ouyang, F.; Zhu, R. A facile nonaqueous route for preparing mixed-phase TiO2 with high activity in photocatalytic hydrogen generation. Int. J. Hydrogen Energy 2017, 42, 11364–11371. [Google Scholar] [CrossRef]
- Schulte, K.L.; DeSario, P.A.; Gray, K.A. Effect of crystal phase composition on the reductive and oxidative abilities of TiO2 nanotubes under UV and visible light. Appl. Catal. B Environ. 2010, 97, 354–360. [Google Scholar] [CrossRef]
- Kiwaan, H.A.; Atwee, T.M.; Azab, E.A.; El-Bindary, A.A. Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide. J. Mol. Struct. 2020, 1200, 127115. [Google Scholar] [CrossRef]
- Lei, E.; Hu, C.; Hu, K.; Zhao, W.; Cui, J.; Xiong, Q.; Guo, Z.; Liu, Z. Composition, morphology, structure and photocatalytic performances of photocatalysts prepared from titanium potassium oxalate. Solid State Sci. 2019, 88, 36–40. [Google Scholar] [CrossRef]
- Pascariu, P.; Cojocaru, C.; Homocianu, M.; Samoila, P.; Dascalu, A.; Suchea, M. New La3+ doped TiO2 nanofibers for photocatalytic degradation of organic pollutants: Effects of thermal treatment and doping loadings. Ceram. Int. 2022, 48, 4953–4964. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Zhao, D.; Liang, Y.; Wang, H.; Wang, N.; Jiang, W.; Liu, S.; Liu, C.; Ding, W.; et al. Preparation, structural and photocatalytic activity of Sn/Fe co-doped TiO2 nanoparticles by sol-gel method. Ceram. Int. 2022, 48, 8297–8305. [Google Scholar] [CrossRef]
- Zhou, X.; Wierzbicka, E.; Liu, N.; Schmuki, P. Black and white anatase, rutile and mixed forms: Band-edges and photocatalytic activity. Chem. Commun. 2019, 55, 533–536. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Lewis, J.P. Second-generation photocatalytic materials: Anion-doped TiO2. J. Phys. Condens. Mat. 2006, 18, 421–434. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, M.; Li, J.; Yang, H.; Gao, J.; He, G.; Sun, Z. Construction of Ag@AgCl decorated TiO2 nanorod array film with optimized photoelectrochemical and photocatalytic performance. Appl. Surf. Sci. 2019, 476, 84–93. [Google Scholar] [CrossRef]
- Zhou, J.; Cheng, Y.; Yu, J. Preparation and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanocomposite thin films. J. Photoch. Photobiol. A 2011, 223, 82–87. [Google Scholar] [CrossRef]
- Pisarek, M.; Krawczyk, M.; Holdynski, M.; Lisowski, W. Plasma Nitriding of TiO2 Nanotubes: N-Doping in Situ Investigations Using XPS. ACS Omega 2020, 5, 8647–8658. [Google Scholar] [CrossRef]
- Wang, L.; Qi, Y.; Li, H.; Guan, R.; Zhang, F.; Zhou, Q.; Wu, D.; Zhao, Z.; Zhou, G.; Sun, Z. Au/g-C3N4 heterostructure sensitized by black phosphorus for full solar spectrum waste-to-hydrogen conversion. Sci. China Mater. 2021, 65, 974–984. [Google Scholar] [CrossRef]
- Bassaid, S.; Robert, D.; Chaib, M. Use of oxalate sacrificial compounds to improve the photocatalytic performance of titanium dioxide. Appl. Catal. B Environ. 2009, 86, 93–97. [Google Scholar] [CrossRef]
Samples | Anatase | Rutile | ||
---|---|---|---|---|
WA(%) | Crystallite Size(nm) | WR(%) | Crystallite Size(nm) | |
CT650-R0 | - | - | 100 | 47.0 |
CT650-R5 | 21 | 37.4 | 79 | 33.2 |
CT650-R15 | 46 | 29.9 | 54 | 29.7 |
CT650-R25 | 100 | 21.4 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Gao, J.; Liu, X.; Wang, P.; Yu, X.; Zhao, F.; Sun, Y.; Feng, W.; Wang, Q. Controllable Phase Transformation and Enhanced Photocatalytic Performance of Nano-TiO2 by Using Oxalic Acid. Nanomaterials 2022, 12, 3019. https://doi.org/10.3390/nano12173019
Chen J, Gao J, Liu X, Wang P, Yu X, Zhao F, Sun Y, Feng W, Wang Q. Controllable Phase Transformation and Enhanced Photocatalytic Performance of Nano-TiO2 by Using Oxalic Acid. Nanomaterials. 2022; 12(17):3019. https://doi.org/10.3390/nano12173019
Chicago/Turabian StyleChen, Jiaqi, Jian Gao, Xiaoyang Liu, Pan Wang, Xue Yu, Feng Zhao, Yan Sun, Wei Feng, and Qingyuan Wang. 2022. "Controllable Phase Transformation and Enhanced Photocatalytic Performance of Nano-TiO2 by Using Oxalic Acid" Nanomaterials 12, no. 17: 3019. https://doi.org/10.3390/nano12173019
APA StyleChen, J., Gao, J., Liu, X., Wang, P., Yu, X., Zhao, F., Sun, Y., Feng, W., & Wang, Q. (2022). Controllable Phase Transformation and Enhanced Photocatalytic Performance of Nano-TiO2 by Using Oxalic Acid. Nanomaterials, 12(17), 3019. https://doi.org/10.3390/nano12173019