MnO2-Ir Nanowires: Combining Ultrasmall Nanoparticle Sizes, O-Vacancies, and Low Noble-Metal Loading with Improved Activities towards the Oxygen Reduction Reaction
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Instrumentation
2.2. Synthesis of MnO2 Nanowires
2.3. Synthesis of MnO2 Nanowires Decorated with Ir NPs (MnO2–Ir NPs)
2.4. Electrochemical Studies
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siow, J.H.; Bilad, M.R.; Caesarendra, W.; Leam, J.J.; Bustam, M.A.; Sambudi, N.S.; Wibisono, Y.; Mahlia, T.M. Progress in Development of Nanostructured Manganese Oxide as Catalyst for Oxygen Reduction and Evolution Reaction. Energies 2021, 14, 6385. [Google Scholar] [CrossRef]
- Fiorio, J.L.; Gothe, M.L.; Kohlrausch, E.C.; Zardo, M.L.; Tanaka, A.A.; de Lima, R.B.; da Silva, A.G.M.; Garcia, M.A.S.; Vidinha, P.; Machado, G. Nanoengineering of Catalysts for Enhanced Hydrogen Production. Hydrogen 2022, 3, 218–254. [Google Scholar] [CrossRef]
- Dessie, Y.; Tadesse, S.; Eswaramoorthy, R.; Abebe, B. Recent Developments in Manganese Oxide Based Nanomaterials with Oxygen Reduction Reaction Functionalities for Energy Conversion and Storage Applications: A Review. J. Sci. Adv. Mater. Devices 2019, 4, 353–369. [Google Scholar] [CrossRef]
- Li, G.; Jiang, M.; Liao, Q.; Ding, R.; Gao, Y.; Jiang, L.; Zhang, D.; Chen, S.; He, H. Directly Anchoring Ag Single Atoms on α-MnO2 Nanorods as Efficient Oxygen Reduction Catalysts for Mg-Air Fuel Cell. J. Alloys Compd. 2021, 858, 157672. [Google Scholar] [CrossRef]
- da Silva, A.G.M.; Rodrigues, T.S.; Wang, J.; Camargo, P.H.C. Plasmonic Catalysis with Designer Nanoparticles. Chem. Commun. 2022, 58, 2055–2074. [Google Scholar] [CrossRef]
- Dong, Y.; Xue, Y.; Gu, W.; Yang, Z.; Xu, G. MnO2 Nanowires/CNTs Composites as Efficient Non-Precious Metal Catalyst for Oxygen Reduction Reaction. J. Electroanal. Chem. 2019, 837, 55–59. [Google Scholar] [CrossRef]
- Li, Y.; Li, Q.; Wang, H.; Zhang, L.; Wilkinson, D.P.; Zhang, J. Recent Progresses in Oxygen Reduction Reaction Electrocatalysts for Electrochemical Energy Applications. Electrochem. Energy Rev. 2019, 2, 518–538. [Google Scholar] [CrossRef]
- Wang, X.; Li, Z.; Qu, Y.; Yuan, T.; Wang, W.; Wu, Y.; Li, Y. Review of Metal Catalysts for Oxygen Reduction Reaction: From Nanoscale Engineering to Atomic Design. Chem 2019, 5, 1486–1511. [Google Scholar] [CrossRef]
- Stacy, J.; Regmi, Y.N.; Leonard, B.; Fan, M. The Recent Progress and Future of Oxygen Reduction Reaction Catalysis: A Review. Renew. Sustain. Energy Rev. 2017, 69, 401–414. [Google Scholar] [CrossRef]
- Xia, Y.; Yang, X. Toward Cost-Effective and Sustainable Use of Precious Metals in Heterogeneous Catalysts. Acc. Chem. Res. 2017, 50, 450–454. [Google Scholar] [CrossRef]
- Goswami, C.; Hazarika, K.K.; Bharali, P. Transition Metal Oxide Nanocatalysts for Oxygen Reduction Reaction. Mater. Sci. Energy Technol. 2018, 1, 117–128. [Google Scholar] [CrossRef]
- Cheng, F.; Su, Y.; Liang, J.; Tao, Z.; Chen, J. MnO2-Based Nanostructures as Catalysts for Electrochemical Oxygen Reduction in Alkaline Media. Chem. Mater. 2010, 22, 898–905. [Google Scholar] [CrossRef]
- Suen, N.T.; Hung, S.F.; Quan, Q.; Zhang, N.; Xu, Y.J.; Chen, H.M. Electrocatalysis for the Oxygen Evolution Reaction: Recent Development and Future Perspectives. Chem. Soc. Rev. 2017, 46, 337–365. [Google Scholar] [CrossRef]
- da Silva, A.G.M.; Kisukuri, C.M.; Rodrigues, T.S.; Candido, E.G.; de Freitas, I.C.; da Silva, A.H.M.; Assaf, J.M.; Oliveira, D.C.; Andrade, L.H.; Camargo, P.H.C. MnO2 Nanowires Decorated with Au Ultrasmall Nanoparticles for the Green Oxidation of Silanes and Hydrogen Production under Ultralow Loadings. Appl. Catal. B Environ. 2016, 184, 35–43. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, W.; Xu, Q.; Ren, X.; Xu, S.; Zhu, S.; Niu, X.; Li, X.; Zhao, R.; Han, Y.; et al. Influence of the MnO2 Phase on Oxygen Evolution Reaction Performance for Low-Loading Iridium Electrocatalysts. ChemElectroChem 2021, 8, 418–424. [Google Scholar] [CrossRef]
- Sun, W.; Zhou, Z.; Zaman, W.Q.; Cao, L.M.; Yang, J. Rational Manipulation of IrO2 Lattice Strain on α-MnO2 Nanorods as a Highly Efficient Water-Splitting Catalyst. ACS Appl. Mater. Interfaces 2017, 9, 41855–41862. [Google Scholar] [CrossRef]
- Uribe-Godínez, J.; Altamirano-Gutiérrez, A. Systematic Study of Iridium-Based Catalysts Derived from Ir4(CO)12, Capable to Perform the ORR and HOR. Catal. Today 2021, 374, 124–134. [Google Scholar] [CrossRef]
- Garcia, M.A.S.; Oliveira, K.C.B.; Costa, J.C.S.; Corio, P.; Gusevskaya, E.V.; Dos Santos, E.N.; Rossi, L.M. Rhodium Nanoparticles as Precursors for the Preparation of an Efficient and Recyclable Hydroformylation Catalyst. ChemCatChem 2015, 7, 1566–1572. [Google Scholar] [CrossRef]
- Garcia, M.A.S.; Heyder, R.S.; Oliveira, K.C.B.; Costa, J.C.S.; Corio, P.; Gusevskaya, E.V.; Santos, N.; Bazito, R.C.; Rossi, L.M. Support Functionalization with a Phosphine-Containing Hyperbranched Polymer: A Strategy to Enhance Phosphine Grafting and Metal Loading in a Hydroformylation Catalyst. ChemCatChem 2016, 8, 1951–1960. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y. Selected-Control Hydrothermal Synthesis of α- and β-MnO2 Single Crystal Nanowires. J. Am. Chem. Soc. 2002, 124, 2880–2881. [Google Scholar] [CrossRef]
- Salvador, G.M.S.; Silva, A.L.; Silva, L.P.C.; Passos, F.B.; Carvalho, N.M.F. Enhanced Activity of Pd/α-MnO2 for Electrocatalytic Oxygen Evolution Reaction. Int. J. Hydrog. Energy 2021, 46, 26976–26988. [Google Scholar] [CrossRef]
- Dai, L.; Sun, Q.; Chen, L.; Guo, H.; Nie, X.; Cheng, J.; Guo, J.; Li, J.; Lou, J.; Ci, L. Ag Doped Urchin-like α-MnO2 toward Efficient and Bifunctional Electrocatalysts for Li-O2 Batteries. Nano Res. 2020, 13, 2356–2364. [Google Scholar] [CrossRef]
- Borges, L.R.; da Silva, A.G.M.; Braga, A.H.; Rossi, L.M.; Suller Garcia, M.A.; Vidinha, P. Towards the Effect of Pt0/Ptδ+ and Ce3+ Species at the Surface of CeO2 Crystals: Understanding the Nature of the Interactions under CO Oxidation Conditions. ChemCatChem 2021, 13, 1340–1354. [Google Scholar] [CrossRef]
- Rosado, T.F.; Teixeira, M.P.; Moraes, L.C.; Silva, L.A.d.; Pontes-Silva, A.V.; Taylor, J.G.; de Freitas, I.C.; de Oliveira, D.C.; Gardener, J.; Solórzano, G.; et al. Synergistic Effect between CeO2 Nanowires and Gold NPs over the Activity and Selectivity in the Oxidation of Thioanisole. Appl. Catal. A Gen. 2021, 613, 118010. [Google Scholar] [CrossRef]
- Jia, J.; Zhang, P.; Chen, L. Catalytic Decomposition of Gaseous Ozone over Manganese Dioxides with Different Crystal Structures. Appl. Catal. B Environ. 2016, 189, 210–218. [Google Scholar] [CrossRef]
- Lu, S.; Zhu, Q.; Dong, Y.; Zheng, Y.; Wang, X.; Li, K.; Huang, F.; Peng, B.; Chen, Y. Influence of MnO2 Morphology on the Catalytic Performance of Ag/MnO2 for the HCHO Oxidation. Catal. Surv. Asia 2019, 23, 210–218. [Google Scholar] [CrossRef]
- Zhai, X.; Jing, F.; Li, L.; Jiang, X.; Zhang, J.; Ma, J.; Chu, W. Toluene Catalytic Oxidation over the Layered MOx−δ-MnO2 (M = Pt, Ir, Ag) Composites Originated from the Facile Self-Driving Combustion Method. Fuel 2021, 283, 118888. [Google Scholar] [CrossRef]
- Li, L.; Chu, W.; Liu, Y. Insights into Key Parameters of MnO2 Catalyst toward High Catalytic Combustion Performance. J. Mater. Sci. 2021, 56, 6361–6373. [Google Scholar] [CrossRef]
- Ferraz, C.P.; Da Silva, A.G.M.; Rodrigues, T.S.; Camargo, P.H.C.; Paul, S.; Wojcieszak, R. Furfural Oxidation on Gold Supported on MnO2: Influence of the Support Structure on the Catalytic Performances. Appl. Sci. 2018, 8, 1246. [Google Scholar] [CrossRef]
- Gong, P.; Xie, J.; Fang, D.; Han, D.; He, F.; Li, F.; Qi, K. Effects of Surface Physicochemical Properties on NH3-SCR Activity of MnO2 Catalysts with Different Crystal Structures. Chin. J. Catal. 2017, 38, 1925–1934. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Wang, L.; Zhang, C.; He, H. Catalytic Oxidation of Formaldehyde over Manganese Oxides with Different Crystal Structures. Catal. Sci. Technol. 2015, 5, 2305–2313. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]
- Freakley, S.J.; Ruiz-Esquius, J.; Morgan, D.J. The X-Ray Photoelectron Spectra of Ir, IrO2 and IrCl3 Revisited. Surf. Interface Anal. 2017, 49, 794–799. [Google Scholar] [CrossRef]
- Oku, M.; Hirokawa, K.; Ikeda, S. X-Ray Photoelectron Spectroscopy of Manganese-Oxygen Systems. J. Electron Spectrosc. Relat. Phenom. 1975, 7, 465–473. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J.; Qu, R.; Wang, Z.; Huang, Q. The Laccase-like Reactivity of Manganese Oxide Nanomaterials for Pollutant Conversion: Rate Analysis and Cyclic Voltammetry. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Franca, M.C.; Ferreira, R.M.; dos Santos Pereira, F.; e Silva, F.A.; Silva, A.C.A.; Cunha, L.C.S.; de Jesus Gomes Varela Júnior, J.; Neto, P.d.L.; Takana, A.A.; Rodrigues, T.S.; et al. Galvanic Replacement Managing Direct Methanol Fuel Cells: AgPt Nanotubes as a Strategy for Methanol Crossover Effect Tolerance. J. Mater. Sci. 2022, 57, 8225–8240. [Google Scholar] [CrossRef]
- Joghee, P.; Malik, J.N.; Pylypenko, S.; O’Hayre, R. A Review on Direct Methanol Fuel Cells—In the Perspective of Energy and Sustainability. MRS Energy Sustain. 2015, 2, 3. [Google Scholar] [CrossRef]
- Mehmood, A.; Scibioh, M.A.; Prabhuram, J.; An, M.G.; Ha, H.Y. A Review on Durability Issues and Restoration Techniques in Long-Term Operations of Direct Methanol Fuel Cells. J. Power Source 2015, 297, 224–241. [Google Scholar] [CrossRef]
- Remona, A.M.; Phani, K.L.N. Methanol-Tolerant Oxygen Reduction Reaction at Pt–Pd C Alloy Nanocatalysts. J. Fuel Cell Sci. Technol. 2011, 8, 0110011–0110016. [Google Scholar] [CrossRef]
- Xu, H.; Ding, L.X.; Liang, C.L.; Tong, Y.X.; Li, G.R. High-Performance Polypyrrole Functionalized PtPd Electrocatalysts Based on PtPd/PPy/PtPd Three-Layered Nanotube Arrays for the Electrooxidation of Small Organic Molecules. NPG Asia Mater. 2013, 5, e69. [Google Scholar] [CrossRef] [Green Version]
- Scheijen, F.J.E.; Beltramo, G.L.; Hoeppener, S.; Housmans, T.H.M.; Koper, M.T.M. The Electrooxidation of Small Organic Molecules on Platinum Nanoparticles Supported on Gold: Influence of Platinum Deposition Procedure. J. Solid State Electrochem. 2008, 12, 483–495. [Google Scholar] [CrossRef]
- Rodrigues, M.R.M.; Ferreira, R.M.; Pereira, F.S.; Silva, F.A.; Silva, A.C.A.; Vitorino, H.A.; Junior, J.J.G.V.; Tanaka, A.A.; Garcia, M.A.S.; Rodrigues, T.S. Application of AgPt Nanoshells in Direct Methanol Fuel Cells: Experimental and Theoretical Insights of Design Electrocatalysts over Methanol Crossover Effect. ChemCatChem 2022. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Lima, S.L.S.; Pereira, F.S.; de Lima, R.B.; de Freitas, I.C.; Spadotto, J.; Connolly, B.J.; Barreto, J.; Stavale, F.; Vitorino, H.A.; Fajardo, H.V.; et al. MnO2-Ir Nanowires: Combining Ultrasmall Nanoparticle Sizes, O-Vacancies, and Low Noble-Metal Loading with Improved Activities towards the Oxygen Reduction Reaction. Nanomaterials 2022, 12, 3039. https://doi.org/10.3390/nano12173039
de Lima SLS, Pereira FS, de Lima RB, de Freitas IC, Spadotto J, Connolly BJ, Barreto J, Stavale F, Vitorino HA, Fajardo HV, et al. MnO2-Ir Nanowires: Combining Ultrasmall Nanoparticle Sizes, O-Vacancies, and Low Noble-Metal Loading with Improved Activities towards the Oxygen Reduction Reaction. Nanomaterials. 2022; 12(17):3039. https://doi.org/10.3390/nano12173039
Chicago/Turabian Stylede Lima, Scarllett L. S., Fellipe S. Pereira, Roberto B. de Lima, Isabel C. de Freitas, Julio Spadotto, Brian J. Connolly, Jade Barreto, Fernando Stavale, Hector A. Vitorino, Humberto V. Fajardo, and et al. 2022. "MnO2-Ir Nanowires: Combining Ultrasmall Nanoparticle Sizes, O-Vacancies, and Low Noble-Metal Loading with Improved Activities towards the Oxygen Reduction Reaction" Nanomaterials 12, no. 17: 3039. https://doi.org/10.3390/nano12173039
APA Stylede Lima, S. L. S., Pereira, F. S., de Lima, R. B., de Freitas, I. C., Spadotto, J., Connolly, B. J., Barreto, J., Stavale, F., Vitorino, H. A., Fajardo, H. V., Tanaka, A. A., Garcia, M. A. S., & da Silva, A. G. M. (2022). MnO2-Ir Nanowires: Combining Ultrasmall Nanoparticle Sizes, O-Vacancies, and Low Noble-Metal Loading with Improved Activities towards the Oxygen Reduction Reaction. Nanomaterials, 12(17), 3039. https://doi.org/10.3390/nano12173039