Capacitive Behavior of Aqueous Electrical Double Layer Based on Dipole Dimer Water Model
Abstract
:1. Introduction
2. Model and Method
3. Results and Discussion
4. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Simon, P.; Gogotsi, Y. Charge storage mechanism in nanoporous carbons and its consequence for electrical double layer capacitors. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 3457–3467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lethesh, K.C.; Bamgbopa, M.O.; Susantyoko, R.A. Prospects and Design Insights of Neat Ionic Liquids as Supercapacitor Electrolytes. Front. Energy Res. 2021, 9, 741772. [Google Scholar] [CrossRef]
- Schütter, C.; Pohlmann, S.; Balducci, A. Industrial Requirements of Materials for Electrical Double Layer Capacitors: Impact on Current and Future Applications. Adv. Energy Mater. 2019, 9, 1900334. [Google Scholar] [CrossRef]
- Przygocki, P.; Abbas, Q.; Gorska, B.; Beguin, F. High-energy hybrid electrochemical capacitor operating down to-40 degrees C with aqueous redox electrolyte based on choline salts. J. Power Sources 2019, 427, 283–292. [Google Scholar] [CrossRef]
- Gorska, B.; Bujewska, P.; Fic, K. Thiocyanates as attractive redox-active electrolytes for high-energy and environmentally-friendly electrochemical capacitors. Phys. Chem. Chem. Phys. 2017, 19, 7923–7935. [Google Scholar] [CrossRef] [PubMed]
- Poudel, M.B.; Kim, H.J. Confinement of Zn-Mg-Al-layered double hydroxide and α-Fe2O3 nanorods on hollow porous carbon nanofibers: A free-standing electrode for solid-state symmetric supercapacitors. Chem. Eng. J. 2021, 429, 132345. [Google Scholar] [CrossRef]
- Poudel, M.B.; Kim, A.R.; Ramakrishan, S.; Logeshwaran, N.; Ramasamy, S.K.; Kim, H.J.; Yoo, D.J. Integrating the essence of metal organic framework-derived ZnCoTe–N–C/MoS2 cathode and ZnCo-NPS-N-CNT as anode for high-energy density hybrid supercapacitors. Compos. Part B 2022, 247, 110339. [Google Scholar] [CrossRef]
- Martins, V.L.; Mantovi, P.S.; Torresi, R.M. Suppressing early capacitance fade of electrochemical capacitors with water-in-salt electrolytes. Electrochim. Acta 2021, 372, 137854. [Google Scholar] [CrossRef]
- Liu, S.; Klukas, R.; Porada, T.; Furda, K.; Fernández, A.M.; Balducci, A. Potassium formate-based electrolytes for high performance aqueous electrochemical capacitors. J. Power Sources 2022, 541, 231657. [Google Scholar] [CrossRef]
- Yambou, P.; Beguin, F. Effect of salt concentration in aqueous LiTFSI electrolytes on the performance of carbon-based electrochemical capacitors. Electrochim. Acta 2021, 389, 138687. [Google Scholar]
- Messias, A.; da Silva, D.A.C.; Fileti, E.E. Salt-in-water and water-in-salt electrolytes: The effects of the asymmetry in cation and anion valence on their properties. Phys. Chem. Chem. Phys. 2021, 24, 336–346. [Google Scholar] [CrossRef]
- Martins, V.L.; Obana, T.T.; Torresi, R.M. Electroactivity of 3D conducting polymers in water-in-salt electrolyte and their electrochemical capacitor performance. J. Electroanal. Chem. 2021, 880, 114822. [Google Scholar] [CrossRef]
- Lannelongue, P.; Bouchal, R.; Mourad, E.; Bodin, C.; Olarte, M.; le Vot, S.; Favier, F.; Fontaine, O. “Water-in-Salt” for Supercapacitors: A Compromise between Voltage, Power Density, Energy Density and Stability. J. Electrochem. Soc. 2018, 165, A657–A663. [Google Scholar] [CrossRef]
- Li, J.; Yun, X.; Hu, Z.; Xi, L.; Li, N.; Tang, H.; Lu, P.; Zhu, Y. Three-dimensional nitrogen and phosphorus co-doped carbon quantum dots/reduced graphene oxide composite aerogels with a hierarchical porous structure as superior electrode materials for supercapacitors. J. Mater. Chem. A 2019, 7, 26311–26325. [Google Scholar] [CrossRef]
- Bai, Y.; Li, N.; Yang, C.; Wu, X.; Yang, H.; Chen, W.; Li, H.; Zhao, B.; Wang, P.-F.; Han, X. Realizing high-voltage and ultralong-life supercapacitors by a universal interfacial engineering strategy. J. Power Sources 2021, 510, 230406. [Google Scholar] [CrossRef]
- Huang, J.; Peng, Z.; Xiao, Y.; Xu, Y.; Chen, L.; Xiong, Y.; Tan, L.; Yuan, K.; Chen, Y. Hierarchical Nanosheets/Walls Structured Carbon-Coated Porous Vanadium Nitride Anodes Enable Wide-Voltage-Window Aqueous Asymmetric Supercapacitors with High Energy Density. Adv. Sci. 2019, 6, 1900550. [Google Scholar] [CrossRef] [PubMed]
- Ramavath, J.N.; Potham, S.; Ramanujam, K. Energy-Dense Aqueous Carbon/Carbon Supercapacitor with a Wide Voltage Window. J. Electrochem. Soc. 2021, 168, 070538. [Google Scholar] [CrossRef]
- Ghanem, L.G.; Hamza, M.A.; Taha, M.M.; Allam, N.K. Symmetric supercapacitor devices based on pristine g-C3N4 mesoporous nanosheets with exceptional stability and wide operating voltage window. J. Energy Storage 2022, 52, 104850. [Google Scholar] [CrossRef]
- Schranger, H.; Barzegar, F.; Abbas, Q. Hybrid electrochemical capacitors in aqueous electrolytes: Challenges and prospects. Curr. Opin. Electrochem. 2020, 21, 167–174. [Google Scholar] [CrossRef]
- Zhou, S.; Lamperski, S. Unusual properties of the electric double layer in an extremely narrow nanotube. A grand canonical Monte Carlo and classical DFT study. J. Phys. Chem. Solids 2022, 161, 110440. [Google Scholar] [CrossRef]
- Zhou, S.; Zhou, R. Influence of ion structure and solvent electric dipole on ultrananoporous supercapacitor: A lattice model study. Phys. Scr. 2022, 97, 085402. [Google Scholar] [CrossRef]
- Zhou, S. On Capacitance and Energy Storage of Supercapacitor with Dielectric Constant Discontinuity. Nanomaterials 2022, 12, 2534. [Google Scholar] [CrossRef] [PubMed]
- Davey, S.B.; Cameron, A.P.; Latham, K.G.; Donne, S.W. Electrical double layer formation on glassy carbon in aqueous solution. Electrochim. Acta 2021, 386, 138416. [Google Scholar] [CrossRef]
- Allagui, A.; Benaoum, H.; Olendski, O. On the Gouy–Chapman–Stern model of the electrical double-layer structure with a generalized Boltzmann factor. Phys. A Stat. Mech. Appl. 2021, 582, 126252. [Google Scholar] [CrossRef]
- Thillaikkarasi, D.; Karthikeyan, S.; Ramesh, R.; Sengodan, P.; Kavitha, D.; Muthubalasubramanian, M. Electrochemical performance of various activated carbon-multi-walled carbon nanotubes symmetric supercapacitor electrodes in aqueous electrolytes. Carbon Lett. 2022, 34, 1481–1505. [Google Scholar] [CrossRef]
- McDaniel, G.; Park, S. Helmholtz Capacitance of Aqueous NaCl Solutions at the Au(100) Electrode from Polarizable and Nonpolarizable Molecular Dynamics Simulations. J. Phys. Chem. C 2022, 126, 16461–16476. [Google Scholar] [CrossRef]
- Zhou, S.; Zhou, R. Ising model study on effects of solvent electric dipole on ultrananoporous supercapacitor. Chin. J. Phys. 2021, 73, 391–405. [Google Scholar] [CrossRef]
- Zhou, S.; Zhou, R.; Tian, C. Impacts of solvent electric dipole and ion valency on energy storage in ultrananoporous supercapacitor: An ising model study. J. Phys. Chem. Solids 2021, 157, 110188. [Google Scholar] [CrossRef]
- Sun, N.; Gersappe, D. Simulation of diffuse-charge capacitance in electric double layer capacitors. Mod. Phys. Lett. B 2017, 31, 1650431. [Google Scholar] [CrossRef]
- Henderson, D.; Silvestre-Alcantara, W.; Kaja, M.; Lamperski, S.; Wu, J.; Bhuiyan, L.B. Structure and capacitance of an electric double layer of an asymmetric valency dimer electrolyte: A comparison of the density functional theory with Monte Carlo simulations. J. Mol. Liq. 2017, 228, 236–242. [Google Scholar] [CrossRef] [Green Version]
- Bossa, G.V.; Caetano, D.L.Z.; de Carvalho, S.J.; Bohinc, K.; May, S. Modeling the camel-to-bell shape transition of the differential capacitance using mean-field theory and Monte Carlo simulations. Eur. Phys. J. E 2018, 41, 113. [Google Scholar] [CrossRef] [PubMed]
- Docampo-Álvarez, B.; Gómez-González, V.; Cabeza, O.; Ivaništšev, V.B.; Gallego, L.J.; Varela, L.M. Molecular dynamics simulations of novel electrolytes based on mixtures of protic and aprotic ionic liquids at the electrochemical interface: Structure and capacitance of the electric double layer. Electrochim. Acta 2019, 305, 223–231. [Google Scholar] [CrossRef]
- Bo, Z.; Li, C.; Yang, H.; Ostrikov, K.; Yan, J.; Cen, K. Design of Supercapacitor Electrodes Using Molecular Dynamics Simulations. Nano-Micro Lett. 2018, 10, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bossa, G.V.; Caetano, D.L.; de Carvalho, S.J.; May, S. Differential capacitance of an electrical double layer with asymmetric ion sizes in the presence of hydration interactions. Electrochim. Acta 2019, 321, 134655. [Google Scholar] [CrossRef]
- Li, S.; Zhao, Z.; Liu, X. Electric double layer structure and capacitance of imidazolium-based ionic liquids with FSI− and Tf− anions at graphite electrode by molecular dynamic simulations. J. Electroanal. Chem. 2019, 851, 113452. [Google Scholar] [CrossRef]
- Voroshylova, I.V.; Ers, H.; Docampo-Álvarez, B.; Pikma, P.; Ivaništšev, V.B.; Cordeiro, M.N.D. Hysteresis in the MD Simulations of Differential Capacitance at the Ionic Liquid–Au Interface. J. Phys. Chem. Lett. 2020, 11, 10408–10413. [Google Scholar] [CrossRef] [PubMed]
- da Silva, D.A.C.; Neto, A.J.P.; Pascon, A.M.; Fileti, E.E.; Fonseca, L.R.C.; Zanin, H.G. Combined Density Functional Theory and Molecular Dynamics Simulations To Investigate the Effects of Quantum and Double-Layer Capacitances in Functionalized Graphene as the Electrode Material of Aqueous-Based Supercapacitors. J. Phys. Chem. C 2021, 125, 5518–5524. [Google Scholar] [CrossRef]
- McDaniel, G. Capacitance of Carbon Nanotube/Graphene Composite Electrodes with [BMIM+][BF4−]/Acetonitrile: Fixed Voltage Molecular Dynamics Simulations. J. Phys. Chem. C 2022, 126, 5822–5837. [Google Scholar] [CrossRef]
- Nigam, R.; Kar, K.K. Simulation Study of Electric Double-Layer Capacitance of Ordered Carbon Electrodes. Langmuir 2022, 38, 12235–12247. [Google Scholar] [CrossRef] [PubMed]
- Nishi, N.; Yasui, S.; Hashimoto, A.; Sakka, T. Anion dependence of camel-shape capacitance at the interface between mercury and ionic liquids studied using pendant drop method. J. Electroanal. Chem. 2017, 789, 108–113. [Google Scholar] [CrossRef]
- Lamperski, S.; Bhuiyan, L.B.; Henderson, U. Off-center charge model revisited: Electrical double layer with multivalent cations. J. Chem. Phys. 2018, 149, 084706. [Google Scholar] [CrossRef]
- Lamperski, S.; Bhuiyan, L.B. Entropy formation of an electrical double layer with divalent off-centre charge cations: Monte Carlo studies. Mol. Phys. 2021, 119, e1918774. [Google Scholar] [CrossRef]
- Guerrero-García, G.I. Local inversion of the mean electrostatic potential, maximum charge reversal, and capacitive compactness of concentrated 1:1 salts: The crucial role of the ionic excluded volume and ion correlations. J. Mol. Liq. 2022, 361, 119566. [Google Scholar] [CrossRef]
- Caetano, D.L.Z.; Bossa, G.V.; de Oliveira, V.M.; Brown, M.A.; de Carvalho, S.J.; May, S. Differential capacitance of an electric double layer with asymmetric solvent-mediated interactions: Mean-field theory and Monte Carlo simulations. Phys. Chem. Chem. Phys. 2017, 19, 23971–23981. [Google Scholar] [CrossRef] [PubMed]
- Voroshylova, I.V.; Ers, H.; Koverga, V.; Docampo-Álvarez, B.; Pikma, P.; Ivaništšev, V.B.; Cordeiro, M.N.D. Ionic liquid–metal interface: The origins of capacitance peaks. Electrochim. Acta 2021, 379, 138148. [Google Scholar] [CrossRef]
- Cruz, C.; Lomba, E.; Ciach, A. Capacitance response and concentration fluctuations close to ionic liquid-solvent demixing. J. Mol. Liq. 2022, 346, 117078. [Google Scholar] [CrossRef]
- Lashkari, S.; Pal, R.; Pope, M.A. Ionic Liquid/Non-Ionic Surfactant Mixtures as Versatile, Non-Volatile Electrolytes: Double-Layer Capacitance and Conductivity. J. Electrochem. Soc. 2022, 169, 040513. [Google Scholar] [CrossRef]
- Jildani, S.R.; Keshavarzi, E. Influence of cation shape asymmetry on the interfacial features and capacitance curve of ionic liquids inside the spherical cavity of the porous electrode as an ionic liquid-based supercapacitor. Electrochim. Acta 2022, 426, 140832. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, J.; Li, Y.; Dong, K.; Yu, Y. EDL structure of ionic liquid-MXene-based supercapacitor and hydrogen bond role on the interface: A molecular dynamics simulation investigation. Phys. Chem. Chem. Phys. 2022, 24, 5903–5913. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Ángeles, F.; Odriozola, G.; Lozada-Cassou, M. Electrolyte distribution around two like-charged rods: Their effective attractive interaction and angular dependent charge reversal. J. Chem. Phys. 2006, 124, 134902. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S. Effective electrostatic forces between two neutral surfaces with surface charge separation: Valence asymmetry and dielectric constant heterogeneity. Mol. Phys. 2022, 120, e2094296. [Google Scholar] [CrossRef]
- Soares, E.D.A.; Vernin, N.S.; Santos, M.S.; Tavares, F.W. Real Electrolyte Solutions in the Functionalized Mean Spherical Approximation: A Density Functional Theory for Simple Electrolyte Solutions. J. Phys. Chem. B 2022, 126, 6095–6101. [Google Scholar] [CrossRef] [PubMed]
- Grimson, M.J.; Rickayzen, G. Forces between surfaces in electrolyte solutions. Chem. Phys. Lett. 1982, 86, 71–75. [Google Scholar] [CrossRef]
- Frink, L.J.D.; van Swol, F. Oscillatory surface forces: A test of the superposition approximation. J. Chem. Phys. 1996, 105, 2884. [Google Scholar] [CrossRef]
- Patra, N. A three-component model on the structure of colloidal solution with size-asymmetric electrolytes. Mol. Phys. 2016, 114, 2341–2350. [Google Scholar] [CrossRef]
- Modak, B.; Patra, C.N.; Ghosh, S.K.; Das, P. Structure of Colloidal Solution in Presence of Mixed Electrolytes: A Solvent Restricted Primitive Model Study. J. Phys. Chem. B 2011, 115, 12126–12134. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Davis, H.T.; White, H.S. Simulations of solvent effects on confined electrolytes. J. Chem. Phys. 1993, 98, 5793–5799. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S. Solvent granularity in the differential electrical capacitance of supercapacitor and mechanism analysis. Phys. A Stat. Mech. Its Appl. 2019, 533, 121905. [Google Scholar] [CrossRef]
- Zhou, S. A statistical mechanics study on relationship between nanopore size and energy storage in supercapacitors. J. Phys. Chem. Solids 2021, 148, 109705. [Google Scholar] [CrossRef]
- Zhou, S. Inter-surface effective electrostatic interactions in the presence of surface charge discreteness and solvent granularity. Mol. Phys. 2020, 118, e1778807. [Google Scholar] [CrossRef]
- Oleksy, A.; Hansen, J.-P. Towards a microscopic theory of wetting by ionic solutions. I. Surface properties of the semi-primitive model. Mol. Phys. 2006, 104, 2871–2883. [Google Scholar] [CrossRef]
- Oleksy, A.; Hansen, J.-P. Microscopic density functional theory of wetting and drying of a solid substrate by an explicit solvent model of ionic solutions. Mol. Phys. 2009, 107, 2609–2624. [Google Scholar] [CrossRef]
- Zhou, S. Mechanism of oscillation of aqueous electrical double layer capacitance: Role of solvent. J. Mol. Liq. 2022, 364, 119943. [Google Scholar] [CrossRef]
- Oleksy, A.; Hansen, J.-P. Wetting and drying scenarios of ionic solutions. Mol. Phys. 2011, 109, 1275–1288. [Google Scholar] [CrossRef] [Green Version]
- Oleksy, A.; Hansen, J.-P. Wetting of a solid substrate by a “civilized” model of ionic solutions. J. Chem. Phys. 2010, 132, 204702. [Google Scholar] [CrossRef] [PubMed]
- Reindl, A.; Bier, M.; Dietrich, S. Electrolyte solutions at curved electrodes. II. Microscopic approach. J. Chem. Phys. 2017, 146, 154704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henderson, D.; Jiang, D.E.; Jin, Z.; Wu, J. Application of Density Functional Theory To Study the Double Layer of an Electrolyte with an Explicit Dimer Model for the Solvent. J. Phys. Chem. B 2012, 116, 11356–11361. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.-L.; Yiacoumi, S.; Tsouris, C. Monte Carlo simulations of electrical double-layer formation in nanopores. J. Chem. Phys. 2002, 117, 8499–8507. [Google Scholar] [CrossRef]
- Jain, S.; Dominik, A.; Chapman, W.G. Modified interfacial statistical associating fluid theory: A perturbation density functional theory for inhomogeneous complex fluids. J. Chem. Phys. 2007, 127, 244904. [Google Scholar] [CrossRef] [PubMed]
- Pernice, M.; Walker, H.F. NITSOL: A Newton Iterative Solver for Nonlinear Systems. SIAM J. Sci. Comput. 1998, 19, 302–318. [Google Scholar] [CrossRef] [Green Version]
- Booth, M.J.; Schlijper, A.; Scales, L.; Haymet, A. Efficient solution of liquid state integral equations using the Newton-GMRES algorithm. Comput. Phys. Commun. 1999, 119, 122–134. [Google Scholar] [CrossRef]
- Lu, B.; Cheng, X.; McCammon, J.A. “New-version-fast-multipole-method” accelerated electrostatic calculations in biomolecular systems. J. Comput. Phys. 2007, 226, 1348–1366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Averkin, N.; Gatsonis, N.A. A parallel electrostatic Particle-in-Cell method on unstructured tetrahedral grids for large-scale bounded collisionless plasma simulations. J. Comput. Phys. 2018, 363, 178–199. [Google Scholar] [CrossRef]
- Nguyen, T.; Li, H.; Bagchi, D.; Solis, F.J.; de la Cruz, M.O. Incorporating surface polarization effects into large-scale coarse-grained Molecular Dynamics simulation. Comput. Phys. Commun. 2019, 241, 80–91. [Google Scholar] [CrossRef]
- Bi, S.; Li, Z.; Xiao, D.; Li, Z.; Mo, T.; Feng, G.; Zhang, X. Pore-Size-Dependent Capacitance and Charging Dynamics of Nanoporous Carbons in Aqueous Electrolytes. J. Phys. Chem. C 2022, 126, 6854–6862. [Google Scholar] [CrossRef]
- Heo, M.; Shin, G.R.; Kim, S.-C. Differential capacitance of uniformly charged hard-sphere ions in planar electric double layers. J. Stat. Mech. Theory Exp. 2019, 2019, 083207. [Google Scholar] [CrossRef]
- Zhang, Y.; Cummings, P.T. Effects of Solvent Concentration on the Performance of Ionic-Liquid/Carbon Supercapacitors. ACS Appl. Mater. Interfaces 2019, 11, 42680–42689. [Google Scholar] [CrossRef]
- Kłos, J.; Lamperski, S. Monte Carlo study of molten salt with charge asymmetry near the electrode surface. J. Chem. Phys. 2014, 140, 054703. [Google Scholar] [CrossRef]
- Khademi, M.; Barz, D.P.J. Structure of the Electrical Double Layer Revisited: Electrode Capacitance in Aqueous Solutions. Langmuir 2020, 36, 4250–4260. [Google Scholar] [CrossRef]
- Watzele, S.A.; Katzenmeier, L.; Sabawa, J.P.; Garlyyev, B.; Bandarenka, A.S. Temperature dependences of the double layer capacitance of some solid/liquid and solid/solid electrified interfaces. An experimental study. Electrochim. Acta 2021, 391, 138969. [Google Scholar] [CrossRef]
- Boda, D.; Henderson, D.; Chan, K.-Y.; Wasan, D.T. Low temperature anomalies in the properties of the electrochemical interface. Chem. Phys. Lett. 1999, 308, 473–478. [Google Scholar] [CrossRef]
- Olivieri, J.-F.; Hynes, J.T.; Laage, D. Confined Water’s Dielectric Constant Reduction Is Due to the Surrounding Low Dielectric Media and Not to Interfacial Molecular Ordering. J. Phys. Chem. Lett. 2021, 12, 4319–4326. [Google Scholar] [CrossRef] [PubMed]
- Murota, K.; Saito, T. Pore Size Effects on Surface Charges and Interfacial Electrostatics of Mesoporous Silicas. Phys. Chem. Chem. Phys. 2022, 24, 18073–18082. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S. Capacitance of electrical double layer formed inside a single infinitely long cylindrical pore. J. Stat. Mech. Theory Exp. 2018, 2018, 103203. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Deng, Y.; Zhou, S. Capacitive Behavior of Aqueous Electrical Double Layer Based on Dipole Dimer Water Model. Nanomaterials 2023, 13, 16. https://doi.org/10.3390/nano13010016
Yang S, Deng Y, Zhou S. Capacitive Behavior of Aqueous Electrical Double Layer Based on Dipole Dimer Water Model. Nanomaterials. 2023; 13(1):16. https://doi.org/10.3390/nano13010016
Chicago/Turabian StyleYang, Songming, Youer Deng, and Shiqi Zhou. 2023. "Capacitive Behavior of Aqueous Electrical Double Layer Based on Dipole Dimer Water Model" Nanomaterials 13, no. 1: 16. https://doi.org/10.3390/nano13010016
APA StyleYang, S., Deng, Y., & Zhou, S. (2023). Capacitive Behavior of Aqueous Electrical Double Layer Based on Dipole Dimer Water Model. Nanomaterials, 13(1), 16. https://doi.org/10.3390/nano13010016