Significance of Ionic Character Induced by Ga-Doped γ-Al2O3 on Polyethylene Degradation to the Precursors of Gasoline and Diesel Oil with a Trace Amount of Wax
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Characterization
2.3. Synthesis of γ-Al2O3 Nanorods
2.4. Polyethylene Degradation
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Antonopoulos, E.-S.; Perkoulidis, G.; Logothetis, D.; Karkanias, C. Ranking municipal solid waste treatment alternatives considering sustainability criteria using the analytical hierarchical process tool. Resour. Conserv. Recycl. 2014, 86, 149–159. [Google Scholar] [CrossRef]
- Cleary, J. LCA of municipal solid waste management systems: A comparative analysis of selected peer-reviewed literature. Environ. Int. 2009, 35, 1256–1266. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.G.; McGonigle, D.; Russell, A.E. Lost at sea: Wher is all the plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef] [PubMed]
- do Sul, J.A.I.; Costa, M.F. The present and future of microplastic pollution in themarine environment. Environ. Pollut. 2014, 185, 352–364. [Google Scholar] [CrossRef]
- Rochman, C.M.; Browne, M.A.; Underwood, A.J.; Van Franeker, J.A.; Thompson, R.C.; Amaral-Zettler, L.A. The ecological impacts of marine debris: Unraveling the demonstrated evidence from what is perceived. Ecology 2016, 97, 302–312. [Google Scholar] [CrossRef]
- Bouwmeester, H.; Hollman, P.C.H.; Peters, R.J.B. Potential health impact of environmentally released micro- and Nanoplastics in the human food productionchain: Experiences from Nanotoxicology. Environ. Sci. Technol. 2015, 49, 8932–8947. [Google Scholar] [CrossRef]
- Cox, K.D.; Covernton, G.A.; Davies, H.L.; Dower, J.F.; Juanes, F.; Dudas, S.E. Human Consumption of Microplastics. Environ. Sci. Technol. 2019, 53, 7068–7074. [Google Scholar] [CrossRef]
- de Souza Machado, A.A.; Lau, C.W.; Till, J.; Kloas, W.; Lehmann, A.; Becker, R.; Rillig, M.C. Impacts of microplastics on the soil biophysical environment. Environ. Sci. Technol. 2018, 52, 9656–9665. [Google Scholar] [CrossRef]
- Liu, H.; Yang, X.; Liu, G.; Liang, C.; Xue, S.; Chen, H.; Ritsema, C.J.; Geissen, V. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil. Chemosphere 2017, 185, 907–917. [Google Scholar] [CrossRef]
- Laganà, P.; Caruso, G.; Corsi, I.; Bergami, E.; Venuti, V.; Majolino, D.; La Ferla, R.; Azzaro, M.; Cappello, S. Do plastics serve as a possible vector for the spread of antibiotic resistance? First insights from bacteria associated to a polystyrene piece from King George Island (Antarctica). Int. J. Hyg. Environ. Health 2019, 222, 89–100. [Google Scholar] [CrossRef]
- Brennecke, D.; Duarte, B.; Paiva, F.; Caçador, I.; Canning-Clode, J. Microplastics as vector for heavy metal contamination from the marine environment. Estuar. Coast. Shelf Sci. 2016, 178, 189–195. [Google Scholar] [CrossRef]
- Panebianco, A.; Nalbone, L.; Giarratana, F.; Ziino, G. First discoveries of microplastics in terrestrial snails. Food Control 2019, 106, 106722. [Google Scholar] [CrossRef]
- Kim, S.W.; An, Y.-J. Soil microplastics inhibit the movement of springtail species. Environ. Int. 2019, 126, 699–706. [Google Scholar] [CrossRef]
- Nelms, S.E.; Galloway, T.S.; Godley, B.J.; Jarvis, D.S.; Lindeque, P.K. Investigating microplastic trophic transfer in marine top predators. Environ. Pollut. 2018, 238, 999–1007. [Google Scholar] [CrossRef]
- Ding, L.; Zhang, S.; Wang, X.; Yang, X.; Zhang, C.; Qi, Y.; Guo, X. The occurrence and distribution characteristics of microplastics in the agricultural soils of Shaanxi Province, in north-western China. Sci. Total Environ. 2020, 720, 137525. [Google Scholar] [CrossRef]
- Cossu, R.; Masi, S. Re-thinking incentives and penalties: Economic aspects of waste management in Italy. Waste Manag. 2013, 33, 2541–2547. [Google Scholar] [CrossRef]
- Cucchiella, F.; D’Adamo, I.; Gastaldi, M. Sustainable management of waste-to-energy facilities. Renew. Sustain. Energy Rev. 2014, 33, 719–728. [Google Scholar] [CrossRef]
- Finnveden, G.; Bjorklund, A.; Moberg, A.; Ekvall, T. Environmental and Eco-nomic assessment methods for waste management decision-support: Possibilities and limitations. Waste Manag. Res. 2007, 25, 263–269. [Google Scholar] [CrossRef]
- Herva, M.; Roca, E. Ranking municipal solid waste treatment alternatives based on ecological footprint and multi-criteria analysis. Ecol. Indic. 2013, 25, 77–84. [Google Scholar] [CrossRef]
- Herva, M.; Roca, E. Review of combined approaches and multi-criteria analysis for corporate environmental evaluation. J. Clean. Prod. 2013, 39, 355–371. [Google Scholar] [CrossRef]
- Simpson, D. Knowledge recourse as a mediator of the relationship between recycling pressures and environmental performance. J. Clean. Prod. 2012, 22, 32–41. [Google Scholar] [CrossRef]
- Song, Q.; Wang, Z.; Li, J. Environmental performance of municipal solid waste strategies based on LCA method: A case study of Macau. J. Clean. Prod. 2013, 57, 92–100. [Google Scholar] [CrossRef]
- Tabasová, A.; Kropáč, J.; Kermes, V.; Nemet, A.; Stehlík, P. Waste-to-energy technologies: Impact on environment. Energy 2012, 44, 146–155. [Google Scholar] [CrossRef]
- Tan, S.T.; Lee, C.T.; Hashim, H.; Ho, W.S.; Lim, J.S. Optimal process network for municipal solid waste management in Iskandar Malaysia. J. Clean. Prod. 2014, 71, 48–58. [Google Scholar] [CrossRef]
- Thomas, B.; McDougall, F. International expert group on life cycle assessment for integrated waste management. J. Clean. Prod. 2005, 13, 321–326. [Google Scholar] [CrossRef]
- Serrano, D.P.; Aguado, J.; Escola, J.M. Developing Advanced Catalysts for the Conversion of Polyolefinic Waste Plastics into Fuels and Chemicals. ACS Catal. 2012, 2, 1924–1941. [Google Scholar] [CrossRef]
- Jia, X.; Qin, C.; Friedberger, T.; Guan, Z.; Huang, Z. Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions. Sci. Adv. 2016, 2, 150–159. [Google Scholar] [CrossRef]
- Tang, Z.; Zhao, S.; Qian, Y.; Jia, H.; Gao, P.; Kang, Y. Eric Lichtfouse Formation of persistent free radicals in sludge biochar by hydrothermal carbonization. Envir. Chem. Lett. 2021, 19, 2705–2712. [Google Scholar] [CrossRef]
- Hayoung, Y.; Taeksang, Y.; Ha-Jun, Y.; Chul-Jin, L.; Sungho, Y. Eco-friendly and techno-economic conversion of CO2 into calcium formate, a valuable resource. Green Chem. 2022, 24, 1738. [Google Scholar]
- Dixit, M.; Kostetskyy, P.; Mpourmpakis, G. Structure–Activity Relationships in Alkane Dehydrogenation on γ-Al2O3: Site-Dependent Reactions. ACS Catal. 2018, 8, 11570–11578. [Google Scholar] [CrossRef]
- Peintinger, M.F.; Kratz, M.J.; Bredow, T. Quantum-chemical study of stable, meta-stable and high-pressure alumina polymorphs and aluminum hydroxides. J. Mater. Chem. A 2014, 2, 13143–13158. [Google Scholar] [CrossRef] [Green Version]
- Kasprzyk-Hordern, B. Chemistry of alumina, reactions in aqueous solution and its application in water treatment. Adv. Colloid Interface Sci. 2004, 110, 19–48. [Google Scholar] [CrossRef]
- Bell, T.E.; González-Carballo, J.M.; Tooze, R.P.; Torrente-Murciano, L. Single-step synthesis of nanostructured γ-alumina with solvent reusability to maximise yield and morphological purity. J. Mater. Chem. A 2015, 3, 6196–6201. [Google Scholar] [CrossRef]
- Haider, S.K.; Kim, D.; Kang, Y.S. Four-step eco-friendly energy efficient recycling of contaminated Nd2Fe14B sludge and coercivity enhancement by reducing oxygen content. Sci. Rep. 2021, 11, 22255. [Google Scholar] [CrossRef]
- Haider, S.K.; Lee, J.Y.; Pawar, A.U.; Kang., Y.S. Novel eco-friendly low cost and energy efficient synthesis of (Nd–Pr–Dy)2Fe14B magnetic powder from monazite concentrate. Sci. Rep. 2021, 11, 20594. [Google Scholar] [CrossRef]
- Ngo, H.M.; Lee, G.; Haider, S.K.; Pal, U.; Hawari, T.; Kim, K.M.; Kim, J.; Kwon, H.-W.; Kang, Y.S. Chemical synthesis of Nd2Fe14B/Fe–Co nanocomposite with high magnetic energy product. RSC Adv. 2021, 11, 32376–32382. [Google Scholar] [CrossRef]
- Galkin, V.; Haider, K.; Ahn, J.B.; Kim, D.S. Effect of High Energy Ball Milling Washing Process on Properties of Nd2Fe14B Particles Obtained by Reduction-Diffusion. In Key Engineering Materials; Trans Tech Publications Ltd.: Wollerau, Switzerland, 2019; Volume 822, pp. 244–251. [Google Scholar]
- Haider, S.K.; Kang, M.C.; Hong, J.; Young, S.K.; Yang, C.W.; Kim, D. Determination of Dy substitution site in Nd2−xDyxFe14B by HAADF-STEM and illustration of magnetic anisotropy of “g” and “f” sites, before and after substitution. Sci. Rep. 2021, 11, 6347. [Google Scholar] [CrossRef]
- Haider, S.K.; Lee, J.Y.; Kim, D.S.; Kang, Y.S. Eco-Friendly Facile Three-Step Recycling Method of (Nd-RE)2Fe14B Magnet Sludge and Enhancement of (BH)max by Ball Milling in Ethanol. ACS Sustain. Chem. Eng. 2020, 8, 8156–8163. [Google Scholar] [CrossRef]
- Haider, S.K.; Ngo, H.M.; Kim, D.; Kang, Y.S. Enhancement of anisotropy energy of SmCo5 by ceasing the coupling at 2c sites in the crystal lattice with Cu substitution. Sci. Rep. 2021, 11, 10063. [Google Scholar] [CrossRef]
- Lars, S.; Karlheinz, H.; Fabian, M.; Jörg, N.; Thomas, Z. Pressure Dependent Product Formation in the Photochemically Initiated Allyl. Molecules 2013, 18, 13608–13622. [Google Scholar]
- Jongwoo, L.; Joseph, W.B. Thermochemical and kinetic analysis of the allyl radical with O2 reaction system. Proc. Combust. Inst. 2005, 30, 1015–1022. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haider, S.K.; Pawar, A.U.; Lee, D.K.; Kang, Y.S. Significance of Ionic Character Induced by Ga-Doped γ-Al2O3 on Polyethylene Degradation to the Precursors of Gasoline and Diesel Oil with a Trace Amount of Wax. Nanomaterials 2022, 12, 3122. https://doi.org/10.3390/nano12183122
Haider SK, Pawar AU, Lee DK, Kang YS. Significance of Ionic Character Induced by Ga-Doped γ-Al2O3 on Polyethylene Degradation to the Precursors of Gasoline and Diesel Oil with a Trace Amount of Wax. Nanomaterials. 2022; 12(18):3122. https://doi.org/10.3390/nano12183122
Chicago/Turabian StyleHaider, Syed Kamran, Amol Uttam Pawar, Don Keun Lee, and Young Soo Kang. 2022. "Significance of Ionic Character Induced by Ga-Doped γ-Al2O3 on Polyethylene Degradation to the Precursors of Gasoline and Diesel Oil with a Trace Amount of Wax" Nanomaterials 12, no. 18: 3122. https://doi.org/10.3390/nano12183122
APA StyleHaider, S. K., Pawar, A. U., Lee, D. K., & Kang, Y. S. (2022). Significance of Ionic Character Induced by Ga-Doped γ-Al2O3 on Polyethylene Degradation to the Precursors of Gasoline and Diesel Oil with a Trace Amount of Wax. Nanomaterials, 12(18), 3122. https://doi.org/10.3390/nano12183122