Graphene-Induced Performance Enhancement of Batteries, Touch Screens, Transparent Memory, and Integrated Circuits: A Critical Review on a Decade of Developments
Abstract
:Highlights
- Graphene possesses high electronic mobility, minimal light absorbance, large surface area and exclusive mechanical properties.
- Graphene’s unique characteristics make it the perfect material for use in batteries, touch screens, transparent memory, and integrated circuits.
- The development of high-quality homogenous graphene, simple transfer processes, a lack of effective characterization methods, and high production costs prevent graphene from being widely used in the electronic industry.
- The production of large-area, nearly defect-free graphene using contemporary synthesis techniques, such CVD, holds great potential for the development of nanoelectronic devices.
Abstract
1. Introduction
2. Graphene Structure and Properties
3. Application of Graphene in Electronic Devices
3.1. Graphene in Batteries
3.2. Graphene Electrodes for Touch Screens
3.3. Transparent Memory with Graphene
3.4. Integrated Circuits with Graphene Transistors
4. Critical Challenges of Graphene-Based Devices
5. Summary and Future Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Abbreviations
AG | Anthracite-derived Graphene |
CMOS | Complementary Metal Oxide Semiconductor |
CNT | Carbon Nanotube |
CVD | Chemical Vapor Deposition |
EF | Fermi Energy |
EGFET | Electrolyte-gated Graphene Field Effect Transistor |
FET | Field Effect Transistor |
FTM | Flexible Transparent Memory |
GCNT | Graphene–Carbon Nanotube |
GCTM | Graphene Charge Trap Memory |
GE-MO | Graphene-Encapsulated Metal Oxide |
GFET | Graphene-based Field Effect Transistor |
GNP | Graphene Nano Platelet |
GNR | Graphene Nano Ribbon |
GNS | Graphene Nanosheet |
GO | Graphene Oxide |
IC | Integrated Circuit |
ISFET | Ion-Sensitive Field Effect Transistor |
ISO | International Organization for Standardization |
ITO | Indium Tin Oxide |
LIB | Lithium-Ion Battery |
MOSFET | Metal Oxide Semiconductor Field Effect Transistor |
NPG | Nanoporous Graphene |
OEM | Optoelectronic Mixers |
PDMS | Polydimethylsiloxane |
PEDOT | M-Poly (3,4-Ethylene Dioxythiophene) |
PEN | Polyethylene Naphtalate |
PES | Polyethersulfon |
PET | Polyethylene Terephthalate |
PI | Polyimide |
PSS | Poly (Styrene Sulfonic Acid) |
PVDF-TrFE | Poly (Vinylidene Fluoride-Trifluoroethylene) |
RF | Radio Frequency |
rGO | Reduced Graphene Oxide |
SARS-CoV-2 | Severe Acute Respiratory Syndrome CoronaVirus |
SEM | Scanning Electron Microscopy |
SOI | Silicon On Insulator |
STM | Scanning Tunnelling Microscopy |
TEM | Transmission Electron Microscopy |
TRRAM | Transparent Resistive Random Access Memory |
WORM | Write Once Read Many |
References
- Wallace, P.R. The Band Theory of Graphite. Phys. Rev. 1947, 71, 622–634. [Google Scholar] [CrossRef]
- Boehm, H.P.; Clauss, A.; Fischer, G.O.; Hofmann, U. Dünnste Kohlenstoff-Folien. Z. Nat. B 1962, 17, 150–153. [Google Scholar] [CrossRef]
- Boehm, H.P.; Setton, R.; Stumpp, E. Nomenclature and Terminology of Graphite Intercalation Compounds (IUPAC Recommendations 1994). Pure Appl. Chem. 1994, 66, 1893–1901. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Li, Q.; Guo, B.D.; Yu, J.G.; Ran, J.R.; Zhang, B.H.; Yan, H.J.; Gong, J.R. Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production of CdS-Cluster-Decorated Graphene Nanosheets. J. Am. Chem. Soc. 2011, 133, 10878–10884. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The Rise of Graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Lee, G.-H.; Cooper, R.C.; An, S.J.; Lee, S.; van der Zande, A.; Petrone, N.; Hammerberg, A.G.; Lee, C.; Crawford, B.; Oliver, W.; et al. High-Strength Chemical-Vapor-Deposited Graphene and Grain Boundaries. Science 2013, 340, 1073–1076. [Google Scholar] [CrossRef]
- Vekeman, J.; Sánchez-Marín, J.; Sánchez de Merás, A.; Garcia Cuesta, I.; Faginas-Lago, N. Flexibility in the Graphene Sheet: The Influence on Gas Adsorption from Molecular Dynamics Studies. J. Phys. Chem. C 2019, 123, 28035–28047. [Google Scholar] [CrossRef]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Calizo, I.; Teweldebrhan, D.; Pokatilov, E.P.; Nika, D.L.; Balandin, A.A.; Bao, W.; Miao, F.; Lau, C.N. Extremely High Thermal Conductivity of Graphene: Prospects for Thermal Management Applications in Nanoelectronic Circuits. Appl. Phys. Lett. 2008, 92, 151911. [Google Scholar] [CrossRef]
- Pop, E.; Varshney, V.; Roy, A.K. Thermal Properties of Graphene: Fundamentals and Applications. MRS Bull. 2012, 37, 1273–1281. [Google Scholar] [CrossRef]
- Stoller, M.D.; Park, S.; Yanwu, Z.; An, J.; Ruoff, R.S.; Zhu, Y.; An, J.; Ruoff, R.S.; Yanwu, Z.; An, J.; et al. Graphene-Based Ultracapacitors. Nano Lett. 2008, 8, 3498–3502. [Google Scholar] [CrossRef] [PubMed]
- Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.R.; Geim, A.K. Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308. [Google Scholar] [CrossRef] [PubMed]
- Bolotin, K.I.; Sikes, K.J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H.L. Ultrahigh Electron Mobility in Suspended Graphene. Solid State Commun. 2008, 146, 351–355. [Google Scholar] [CrossRef]
- Choi, J.S.; Choi, H.; Kim, K.C.; Jeong, H.Y.; Yu, Y.J.; Kim, J.T.; Kim, J.S.; Shin, J.W.; Cho, H.; Choi, C.G. Facile Fabrication of Properties-Controllable Graphene Sheet. Sci. Rep. 2016, 6, 24525. [Google Scholar] [CrossRef]
- Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y.I.; et al. Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes. Nat. Nanotechnol. 2010, 5, 574–578. [Google Scholar] [CrossRef]
- Littlejohn, S.D. Electrical Properties of Graphite Nanoparticles in Silicone; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 978-3-319-00740-3. [Google Scholar]
- Pei, Q.-X.; Zhang, Y.-W.; Shenoy, V.B. Mechanical Properties of Methyl Functionalized Graphene: A Molecular Dynamics Study. Nanotechnology 2010, 21, 115709. [Google Scholar] [CrossRef]
- Scanning Probe Methods Group. Available online: http://www.nanoscience.de/HTML/research/graphene.html (accessed on 6 September 2022).
- Zhang, Y.; Ren, W.; Jiang, Z.; Yang, S.; Jing, W.; Shi, P.; Wu, X.; Ye, Z.-G. Low-Temperature Remote Plasma-Enhanced Atomic Layer Deposition of Graphene and Characterization of Its Atomic-Level Structure. J. Mater. Chem. C 2014, 2, 7570–7574. [Google Scholar] [CrossRef]
- Wang, S.J.; Geng, Y.; Zheng, Q.; Kim, J.-K. Fabrication of Highly Conducting and Transparent Graphene Films. Carbon 2010, 48, 1815–1823. [Google Scholar] [CrossRef]
- Zhang, X.; Xin, J.; Ding, F. The Edges of Graphene. Nanoscale 2013, 5, 2556–2569. [Google Scholar] [CrossRef]
- Martin, I.; Blanter, Y.M. Transport in Disordered Graphene Nanoribbons. Phys. Rev. B 2009, 79, 235132. [Google Scholar] [CrossRef]
- Son, Y.W.; Cohen, M.L.; Louie, S.G. Energy Gaps in Graphene Nanoribbons. Phys. Rev. Lett. 2006, 97, 216803. [Google Scholar] [CrossRef] [PubMed]
- Ni, Z.H.; Wang, H.M.; Kasim, J.; Fan, H.M.; Yu, T.; Wu, Y.H.; Feng, Y.P.; Shen, Z.X.; About, M.; Article, T. Reflection and Contrast Spectroscopy Graphene Thickness Determination Using Reflection and Contrast Spectroscopy. Nano Lett. 2007, 7, 2758–2763. [Google Scholar] [CrossRef] [PubMed]
- Mali, K.S.; Greenwood, J.; Adisoejoso, J.; Phillipson, R.; De Feyter, S. Nanostructuring Graphene for Controlled and Reproducible Functionalization. Nanoscale 2015, 7, 1566–1585. [Google Scholar] [CrossRef]
- Chatzakis, I. Ultrafast Dynamics of Electrons and Phonons in Graphitic Materials; Kansas State University: Manhattan, KS, USA, 2009. [Google Scholar]
- Lin, C.-Y.; Wu, J.-Y.; Ou, Y.-J.; Chiu, Y.-H.; Lin, M.-F. Magneto-Electronic Properties of Multilayer Graphenes. Phys. Chem. Chem. Phys. 2015, 17, 26008–26035. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, H.; Hu, G.; Li, S.; Su, H.; Zhang, J. Graphene Based Surface Plasmon Polariton Modulator Controlled by Ferroelectric Domains in Lithium Niobate. Sci. Rep. 2015, 5, 18258. [Google Scholar] [CrossRef]
- Ohta, T.; Bostwick, A.; Seyller, T.; Horn, K.; Rotenberg, E. Controlling the Electronic Structure of Bilayer Graphene. Science 2006, 313, 951–954. [Google Scholar] [CrossRef]
- Schwierz, F. Graphene Transistors. Nat. Nanotechnol. 2010, 5, 487–496. [Google Scholar] [CrossRef]
- Graphene Makes Transistors Tunable. Available online: https://spectrum.ieee.org/graphene-makes-transistors-tunable (accessed on 22 June 2022).
- Pykal, M.; Jurečka, P.; Karlický, F.; Otyepka, M. Modelling of Graphene Functionalization. Phys. Chem. Chem. Phys. 2016, 18, 6351–6372. [Google Scholar] [CrossRef]
- Wick, P.; Louw-Gaume, A.E.; Kucki, M.; Krug, H.F.; Kostarelos, K.; Fadeel, B.; Dawson, K.A.; Salvati, A.; Vázquez, E.; Ballerini, L.; et al. Classification Framework for Graphene-Based Materials. Angew. Chem. Int. Ed. 2014, 53, 7714–7718. [Google Scholar] [CrossRef] [Green Version]
- ISO/TS 80004-13:2017(En); Nanotechnologies—Vocabulary—Part 13: Graphene and Related Two-Dimensional (2D) Materials. Available online: https://www.iso.org/obp/ui/#iso:std:iso:ts:80004:-13:ed-1:v1:en (accessed on 13 May 2022).
- ISO/TR 19733:2019(En); Nanotechnologies—Matrix of Properties and Measurement Techniques for Graphene and Related Two-Dimensional (2D) Materials. Available online: https://www.iso.org/obp/ui/#iso:std:iso:tr:19733:ed-1:v1:en (accessed on 14 May 2022).
- Zhu, Y.; Qu, B.; Andreeva, D.V.; Ye, C.; Novoselov, K.S. Graphene Standardization: The Lesson from the East. Mater. Today 2021, 47, 9–15. [Google Scholar] [CrossRef]
- Sengupta, J.; Hussain, C.M. Graphene and Its Derivatives for Analytical Lab on Chip Platforms. TrAC Trends Anal. Chem. 2019, 114, 326–337. [Google Scholar] [CrossRef]
- You, R.; Liu, Y.-Q.; Hao, Y.-L.; Han, D.-D.; Zhang, Y.-L.; You, Z. Laser Fabrication of Graphene-Based Flexible Electronics. Adv. Mater. 2020, 32, 1901981. [Google Scholar] [CrossRef] [PubMed]
- Htwe, Y.Z.N.; Abdullah, M.K.; Mariatti, M. Optimization of Graphene Conductive Ink Using Solvent Exchange Techniques for Flexible Electronics Applications. Synth. Met. 2021, 274, 116719. [Google Scholar] [CrossRef]
- Olabi, A.G.; Abdelkareem, M.A.; Wilberforce, T.; Sayed, E.T. Application of Graphene in Energy Storage Device—A Review. Renew. Sustain. Energy Rev. 2021, 135, 110026. [Google Scholar] [CrossRef]
- Kulyk, B.; Freitas, M.A.; Santos, N.F.; Mohseni, F.; Carvalho, A.F.; Yasakau, K.; Fernandes, A.J.S.; Bernardes, A.; Figueiredo, B.; Silva, R.; et al. A Critical Review on the Production and Application of Graphene and Graphene-Based Materials in Anti-Corrosion Coatings. Crit. Rev. Solid State Mater. Sci. 2022, 47, 309–355. [Google Scholar] [CrossRef]
- Pandit, S.; Gaska, K.; Kádár, R.; Mijakovic, I. Graphene-Based Antimicrobial Biomedical Surfaces. ChemPhysChem 2021, 22, 250–263. [Google Scholar] [CrossRef]
- Tiwari, S.K.; Sahoo, S.; Wang, N.; Huczko, A. Graphene Research and Their Outputs: Status and Prospect. J. Sci. Adv. Mater. Dev. 2020, 5, 10–29. [Google Scholar] [CrossRef]
- Vinal, G.W. Storage Batteries. J. Opt. Soc. Am. 1925, 11, 263–274. [Google Scholar] [CrossRef]
- Lithium-Ion Batteries Need to Be Greener and More Ethical. Nature 2021, 595, 7. [CrossRef]
- Hein, S.; Danner, T.; Westhoff, D.; Prifling, B.; Scurtu, R.; Kremer, L.; Hoffmann, A.; Hilger, A.; Osenberg, M.; Manke, I.; et al. Influence of Conductive Additives and Binder on the Impedance of Lithium-Ion Battery Electrodes: Effect of Morphology. J. Electrochem. Soc. 2020, 167, 013546. [Google Scholar] [CrossRef]
- Liu, R.; Duay, J.; Lee, S.B. Heterogeneous Nanostructured Electrode Materials for Electrochemical Energy Storage. Chem Commun. 2011, 47, 1384–1404. [Google Scholar] [CrossRef] [PubMed]
- Asenbauer, J.; Eisenmann, T.; Kuenzel, M.; Kazzazi, A.; Chen, Z.; Bresser, D. The Success Story of Graphite as a Lithium-Ion Anode Material—Fundamentals, Remaining Challenges, and Recent Developments Including Silicon (Oxide) Composites. Sustain. Energy Fuels 2020, 4, 5387–5416. [Google Scholar] [CrossRef]
- Bai, L.Z.; Zhao, D.L.; Zhang, T.M.; Xie, W.G.; Zhang, J.M.; Shen, Z.M. A Comparative Study of Electrochemical Performance of Graphene Sheets, Expanded Graphite and Natural Graphite as Anode Materials for Lithium-Ion Batteries. Electrochim. Acta 2013, 107, 555–561. [Google Scholar] [CrossRef]
- Simón, M.; Benítez, A.; Caballero, A.; Morales, J.; Vargas, O. Untreated Natural Graphite as a Graphene Source for High-Performance Li-Ion Batteries. Batteries 2018, 4, 13. [Google Scholar] [CrossRef]
- Yoo, E.J.; Kim, J.; Hosono, E.; Zhou, H.S.; Kudo, T.; Honma, I. Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries. Nano Lett. 2008, 8, 2277–2282. [Google Scholar] [CrossRef]
- Li, X.; Hu, Y.; Liu, J.; Lushington, A.; Li, R.; Sun, X. Structurally Tailored Graphene Nanosheets as Lithium Ion Battery Anodes: An Insight to Yield Exceptionally High Lithium Storage Performance. Nanoscale 2013, 5, 12607–12615. [Google Scholar] [CrossRef]
- Lian, P.; Zhu, X.; Liang, S.; Li, Z.; Yang, W.; Wang, H. Large Reversible Capacity of High Quality Graphene Sheets as an Anode Material for Lithium-Ion Batteries. Electrochim. Acta 2010, 55, 3909–3914. [Google Scholar] [CrossRef]
- Esteve-Adell, I.; Porcel-Valenzuela, M.; Zubizarreta, L.; Gil-Agustí, M.; García-Pellicer, M.; Quijano-Lopez, A. Influence of the Specific Surface Area of Graphene Nanoplatelets on the Capacity of Lithium-Ion Batteries. Front. Chem. 2022, 10. [Google Scholar] [CrossRef]
- Wu, Z.S.; Ren, W.; Xu, L.; Li, F.; Cheng, H.M. Doped Graphene Sheets as Anode Materials with Superhigh Rate and Large Capacity for Lithium Ion Batteries. Acs Nano 2011, 5, 5463–5471. [Google Scholar] [CrossRef]
- Zhan, L.; Yang, S.; Wang, Y.; Wang, Y.; Ling, L.; Feng, X. Fabrication of Fully Fluorinated Graphene Nanosheets Towards High-Performance Lithium Storage. Adv. Mater. Interfaces 2014, 1, 1300149. [Google Scholar] [CrossRef]
- Fang, Y.; Lv, Y.; Che, R.; Wu, H.; Zhang, X.; Gu, D.; Zheng, G.; Zhao, D. Two-Dimensional Mesoporous Carbon Nanosheets and Their Derived Graphene Nanosheets: Synthesis and Efficient Lithium Ion Storage. J. Am. Chem. Soc. 2013, 135, 1524–1530. [Google Scholar] [CrossRef] [PubMed]
- Greco, A.; Cao, D.; Jiang, X.; Yang, H. A Theoretical and Computational Study of Lithium-Ion Battery Thermal Management for Electric Vehicles Using Heat Pipes. J. Power Sources 2014, 257, 344–355. [Google Scholar] [CrossRef]
- Goli, P.; Legedza, S.; Dhar, A.; Salgado, R.; Renteria, J.; Balandin, A.A. Graphene-Enhanced Hybrid Phase Change Materials for Thermal Management of Li-Ion Batteries. J. Power Sources 2014, 248, 37–43. [Google Scholar] [CrossRef]
- Bhaskar, A.; Deepa, M.; Rao, T.N.; Varadaraju, U.V. Enhanced Nanoscale Conduction Capability of a MoO2/Graphene Composite for High Performance Anodes in Lithium Ion Batteries. J. Power Sources 2012, 216, 169–178. [Google Scholar] [CrossRef]
- Cai, J.; Zhao, P.; Li, Z.; Li, W.; Zhong, J.; Yu, J.; Yang, Z. A Corn-Inspired Structure Design for an Iron Oxide Fiber/Reduced Graphene Oxide Composite as a High-Performance Anode Material for Li-Ion Batteries. RSC Adv. 2017, 7, 44874–44883. [Google Scholar] [CrossRef]
- Zeng, H.; Xing, B.; Chen, L.; Yi, G.; Huang, G.; Yuan, R.; Zhang, C.; Cao, Y.; Chen, Z. Nitrogen-Doped Porous Co3O4/Graphene Nanocomposite for Advanced Lithium-Ion Batteries. Nanomaterials 2019, 9, 1253. [Google Scholar] [CrossRef]
- Wu, D.; Wang, C.; Wu, H.; Wang, S.; Wang, F.; Chen, Z.; Zhao, T.; Zhang, Z.; Zhang, L.Y.; Li, C.M. Synthesis of Hollow Co3O4 Nanocrystals in Situ Anchored on Holey Graphene for High Rate Lithium-Ion Batteries. Carbon 2020, 163, 137–144. [Google Scholar] [CrossRef]
- Garakani, M.A.; Abouali, S.; Zhang, B.; Takagi, C.A.; Xu, Z.L.; Huang, J.Q.; Huang, J.; Kim, J.K. Cobalt Carbonate/ and Cobalt Oxide/Graphene Aerogel Composite Anodes for High Performance Li-Ion Batteries. ACS Appl. Mater. Interfaces 2014, 6, 18971–18980. [Google Scholar] [CrossRef]
- Choi, S.H.; Ko, Y.N.; Lee, J.-K.; Kang, Y.C. Rapid Continuous Synthesis of Spherical Reduced Graphene Ball-Nickel Oxide Composite for Lithium Ion Batteries. Sci. Rep. 2014, 4, 5786. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Deng, Q.; Li, M.; Jiang, K.; Zhang, J.; Hu, Z.; Chu, J. Copper Ferrites@reduced Graphene Oxide Anode Materials for Advanced Lithium Storage Applications. Sci. Rep. 2017, 7, 8903. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.W.; Lee, C.W.; Yoon, S.B.; Kim, M.S.; Jeong, J.H.; Nam, K.W.; Roh, K.C.; Kim, K.B. Superior Electrochemical Properties of Manganese Dioxide/Reduced Graphene Oxide Nanocomposites as Anode Materials for High-Performance Lithium Ion Batteries. J. Power Sources 2016, 312, 207–215. [Google Scholar] [CrossRef]
- Han, J.; Kong, D.; Lv, W.; Tang, D.; Han, D.; Zhang, C.; Liu, D.; Xiao, Z.; Zhang, X.; Xiao, J.; et al. Caging Tin Oxide in Three-Dimensional Graphene Networks for Superior Volumetric Lithium Storage. Nat. Commun. 2018, 9, 402. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Huang, Y.; Jia, D.; Pang, W.K.; Guo, Z.; Du, Y.; Tang, X.; Cao, Y. Self-Assembled Sandwich-like Vanadium Oxide/Graphene Mesoporous Composite as High-Capacity Anode Material for Lithium Ion Batteries. Inorg. Chem. 2015, 54, 11799–11806. [Google Scholar] [CrossRef]
- Zhong, X.; Wang, J.; Li, W.; Liu, X.; Yang, Z.; Gu, L.; Yu, Y. Facile Synthesis of Germanium-Reduced Graphene Oxide Composite as Anode for High Performance Lithium-Ion Batteries. RSC Adv. 2014, 4, 58184–58189. [Google Scholar] [CrossRef]
- Li, X.; Wu, M.; Feng, T.; Xu, Z.; Qin, J.; Chen, C.; Tu, C.; Wang, D. Graphene Enhanced Silicon/Carbon Composite as Anode for High Performance Lithium-Ion Batteries. RSC Adv. 2017, 7, 48286–48293. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Hou, Z.; Zhang, L.; Li, C. Uniform SiOx/Graphene Composite Materials for Lithium Ion Battery Anodes. J. Alloys Compd. 2019, 809, 151798. [Google Scholar] [CrossRef]
- Tang, F.; Jiang, T.; Tan, Y.; Xu, X.; Zhou, Y. Preparation and Electrochemical Performance of Silicon@graphene Aerogel Composites for Lithium-Ion Batteries. J. Alloys Comp. 2021, 854, 157135. [Google Scholar] [CrossRef]
- Shen, H.; Xia, X.; Yan, S.; Jiao, X.; Sun, D.; Lei, W.; Hao, Q. SnO2/NiFe2O4/Graphene Nanocomposites as Anode Materials for Lithium Ion Batteries. J. Alloys Comp. 2021, 853, 157017. [Google Scholar] [CrossRef]
- Chen, J.; Hu, X.; Gao, H.; Yan, S.; Chen, S.; Liu, X. Graphene-Wrapped MnCO3/Mn3O4 Nanocomposite as an Advanced Anode Material for Lithium-Ion Batteries: Synergistic Effect and Electrochemical Performances. J. Mater. Sci. Technol. 2022, 99, 9–17. [Google Scholar] [CrossRef]
- Raji, A.R.O.; Villegas Salvatierra, R.; Kim, N.D.; Fan, X.; Li, Y.; Silva, G.A.L.; Sha, J.; Tour, J.M. Lithium Batteries with Nearly Maximum Metal Storage. ACS Nano 2017, 11, 6362–6369. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Zhu, J.; Feng, J.; Du, S. Direct in Situ Observation and Explanation of Lithium Dendrite of Commercial Graphite Electrodes. RSC Adv. 2015, 5, 69514–69521. [Google Scholar] [CrossRef]
- Liang, J.; Zhao, Y.; Guo, L.; Li, L. Flexible Free-Standing Graphene/SnO2 Nanocomposites Paper for Li-Ion Battery. ACS Appl. Mater. Interfaces 2012, 4, 5742–5748. [Google Scholar] [CrossRef]
- Huang, X.; Chai, J.; Jiang, T.; Wei, Y.-J.; Chen, G.; Liu, W.; Han, D.; Niu, L.; Wang, L.; Zhang, X. Self-Assembled Large-Area Co(OH)2 Nanosheets/Ionic Liquid Modified Graphene Heterostructures toward Enhanced Energy Storage. J. Mater. Chem. 2012, 22, 3404–3410. [Google Scholar] [CrossRef]
- Yang, S.; Feng, X.; Ivanovici, S.; Müllen, K. Fabrication of Graphene-Encapsulated Oxide Nanoparticles: Towards High-Performance Anode Materials for Lithium Storage. Angew. Chem. Int. Ed. 2010, 49, 8408–8411. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Zhu, J.; Cheng, C.; Liu, J.; Yang, H.; Cong, C.; Guan, C.; Jia, X.; Fan, H.J.; Yan, Q.; et al. A General Strategy toward Graphene@metal Oxide Core–Shell Nanostructures for High-Performance Lithium Storage. Energy Environ. Sci. 2011, 4, 4954–4961. [Google Scholar] [CrossRef]
- Takahashi, Y.; Tode, S.; Kinoshita, A.; Fujimoto, H.; Nakane, I.; Fujitani, S. Development of Lithium-Ion Batteries with a LiCoO[Sub 2] Cathode Toward High Capacity by Elevating Charging Potential. J. Electrochem. Soc. 2008, 155, A537–A541. [Google Scholar] [CrossRef]
- Lee, M.; Lee, S.; Oh, P.; Kim, Y.; Cho, J. High Performance LiMn2O4 Cathode Materials Grown with Epitaxial Layered Nanostructure for Li-Ion Batteries. Nano Lett. 2014, 14, 993–999. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.Y.; Tang, X. Cycling Degradation of an Automotive LiFePO4 lithium-Ion Battery. J. Power Sources 2011, 196, 1513–1520. [Google Scholar] [CrossRef]
- Gaubicher, J.; Wurm, C.; Goward, G.; Masquelier, C.; Nazar, L. Rhombohedral Form of Li3V2(PO4)3 as a Cathode in Li-Ion Batteries. Chem. Mater. 2000, 12, 3240–3242. [Google Scholar] [CrossRef]
- Wang, S.; Lu, Z.; Wang, D.; Li, C.; Chen, C.; Yin, Y. Porous Monodisperse V2O5 Microspheres as Cathode Materials for Lithium-Ion Batteries. J. Mater. Chem. 2011, 21, 6365–6369. [Google Scholar] [CrossRef]
- Deng, L.-F.; Yu, K.-M. Influence of Graphene on the Electrochemical Performance of LiCoO2 Cathode Materials for Lithium-Ion Batteries. J. Funct. Mater. 2014, 45, 84–88. [Google Scholar] [CrossRef]
- Pyun, M.H.; Park, Y.J. Graphene/LiMn2O4 Nanocomposites for Enhanced Lithium Ion Batteries with High Rate Capability. J. Alloys Comp. 2015, 643, S90–S94. [Google Scholar] [CrossRef]
- Lung-Hao Hu, B.; Wu, F.Y.; Lin, C.T.; Khlobystov, A.N.; Li, L.J. Graphene-Modified LiFePO4 Cathode for Lithium Ion Battery beyond Theoretical Capacity. Nat. Commun. 2013, 4, 1687. [Google Scholar] [CrossRef] [PubMed]
- Rai, A.K.; Thi, T.V.; Gim, J.; Kim, S.; Kim, J. Li3V2(PO4)3/Graphene Nanocomposite as a High Performance Cathode Material for Lithium Ion Battery. Ceram. Int. 2014, 41, 389–396. [Google Scholar] [CrossRef]
- Liu, Q.; Li, Z.F.; Liu, Y.; Zhang, H.; Ren, Y.; Sun, C.J.; Lu, W.; Zhou, Y.; Stanciu, L.; Stach, E.A.; et al. Graphene-Modified Nanostructured Vanadium Pentoxide Hybrids with Extraordinary Electrochemical Performance for Li-Ion Batteries. Nat. Commun. 2015, 6, 6127. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, Q.; Goodman, M.D.; Zhu, H.; Kim, J.; Krueger, N.A.; Ning, H.; Huang, X.; Liu, J.; Terrones, M.; et al. Graphene Sandwiched Mesostructured Li-Ion Battery Electrodes. Adv. Mater. 2016, 28, 7696–7702. [Google Scholar] [CrossRef]
- Son, I.H.; Park, J.H.; Park, S.; Park, K.; Han, S.; Shin, J.; Doo, S.G.; Hwang, Y.; Chang, H.; Choi, J.W. Graphene Balls for Lithium Rechargeable Batteries with Fast Charging and High Volumetric Energy Densities. Nat. Commun. 2017, 8, 1561. [Google Scholar] [CrossRef]
- YongJian, W.U.; RenHeng, T.; WenChao, L.I.; Ying, W.; Ling, H.; LiuZhang, O. A High-Quality Aqueous Graphene Conductive Slurry Applied in Anode of Lithium-Ion Batteries. J. Alloys Comp. 2020, 830, 154575. [Google Scholar] [CrossRef]
- Kim, H.; Park, K.Y.; Hong, J.; Kang, K. All-Graphene-Battery: Bridging the Gap between Supercapacitors and Lithium Ion Batteries. Sci. Rep. 2014, 4, 5278. [Google Scholar] [CrossRef]
- Johnson, E.A. Touch Display—A Novel Input/Output Device for Computers. Electron. Lett. 1965, 1, 219–220. [Google Scholar] [CrossRef]
- Yu, X.; Marks, T.J.; Facchetti, A. Metal Oxides for Optoelectronic Applications. Nat. Mater. 2016, 15, 383–396. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.-H.; Shin, J.-H.; Ju, B.-K.; Kim, K.-H.; Park, N.-M.; Kim, B.-S.; Cheong, W.-S. Index-Matched Indium Tin Oxide Electrodes for Capacitive Touch Screen Panel Applications. J. Nanosci. Nanotechnol. 2013, 13, 7756–7759. [Google Scholar] [CrossRef] [PubMed]
- Her, S.-C.; Chang, C.-F. Fabrication and Characterization of Indium Tin Oxide Films. J. Appl. Biomater. Funct. Mater. 2017, 15, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Geiger, S.; Kasian, O.; Mingers, A.M.; Mayrhofer, K.J.J.; Cherevko, S. Stability Limits of Tin-Based Electrocatalyst Supports. Sci. Rep. 2017, 7, 4595. [Google Scholar] [CrossRef] [PubMed]
- Layani, M.; Kamyshny, A.; Magdassi, S. Transparent Conductors Composed of Nanomaterials. Nanoscale 2014, 6, 5581–5591. [Google Scholar] [CrossRef]
- Arvidsson, R.; Kushnir, D.; Molander, S.; Sandén, B.A. Energy and Resource Use Assessment of Graphene as a Substitute for Indium Tin Oxide in Transparent Electrodes. J. Clean. Prod. 2016, 132, 289–297. [Google Scholar] [CrossRef]
- Das, T.; Sharma, B.K.; Katiyar, A.K.; Ahn, J.-H. Graphene-Based Flexible and Wearable Electronics. J. Semicond. 2018, 39, 011007. [Google Scholar] [CrossRef]
- Ryu, J.; Kim, Y.; Won, D.; Kim, N.; Park, J.S.; Lee, E. Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition. ACS Nano 2014, 8, 950–956. [Google Scholar] [CrossRef]
- Wang, J.; Liang, M.; Fang, Y.; Qiu, T.; Zhang, J.; Zhi, L. Rod-Coating: Towards Large-Area Fabrication of Uniform Reduced Graphene Oxide Films for Flexible Touch Screens. Adv. Mater. 2012, 24, 2874–2878. [Google Scholar] [CrossRef]
- Ponnamma, D.; Sadasivuni, K.K.; Cabibihan, J.-J.; Yoon, W.J.; Kumar, B. Reduced Graphene Oxide Filled Poly(Dimethyl Siloxane) Based Transparent Stretchable, and Touch-Responsive Sensors. Appl. Phys. Lett. 2016, 108, 171906. [Google Scholar] [CrossRef]
- Ullah, S.; Yang, X.; Ta, H.Q.; Hasan, M.; Bachmatiuk, A.; Tokarska, K.; Trzebicka, B.; Fu, L.; Rummeli, M.H. Graphene Transfer Methods: A Review. Nano Res. 2021, 14, 3756–3772. [Google Scholar] [CrossRef]
- Guo, C.; Kong, X.; Ji, H. Hot-Roll-Pressing Mediated Transfer of Chemical Vapor Deposition Graphene for Transparent and Flexible Touch Screen with Low Sheet-Resistance. J. Nanosci. Nanotechnol. 2018, 18, 4337–4342. [Google Scholar] [CrossRef]
- Chen, R.; Das, S.R.; Jeong, C.; Khan, M.R.; Janes, D.B.; Alam, M.A. Co-Percolating Graphene-Wrapped Silver Nanowire Network for High Performance, Highly Stable, Transparent Conducting Electrodes. Adv. Funct. Mater. 2013, 23, 5150–5158. [Google Scholar] [CrossRef]
- Jurewicz, I.; Fahimi, A.; Lyons, P.E.; Smith, R.J.; Cann, M.; Large, M.L.; Tian, M.; Coleman, J.N.; Dalton, A.B. Insulator-Conductor Type Transitions in Graphene-Modified Silver Nanowire Networks: A Route to Inexpensive Transparent Conductors. Adv. Funct. Mater. 2014, 24, 7580–7587. [Google Scholar] [CrossRef]
- Zhu, Y. Rational Design of Hybrid Graphene Films for High-Performance. ACS Nano 2011, 5, 6472–6479. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, A.; Sengupta, J. Chapter 8—Nanogenerators: A New Paradigm in Blue Energy Harvesting. In Nano Tools and Devices for Enhanced Renewable Energy; Micro and Nano Technologies; Devasahayam, S., Hussain, C.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 171–193. ISBN 978-0-12-821709-2. [Google Scholar]
- Khan, U.; Kim, T.-H.; Ryu, H.; Seung, W.; Kim, S.-W. Graphene Tribotronics for Electronic Skin and Touch Screen Applications. Adv. Mater. 2017, 29, 1603544. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Kim, J.; Jang, B.; Kim, S.; Sharma, B.K.; Kim, J.-H.; Ahn, J.-H. Graphene-Based Stretchable/Wearable Self-Powered Touch Sensor. Nano Energy 2019, 62, 259–267. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, H.; Sun, X.; Diao, N.; Wang, J.; Zhang, B.; Qin, C.; Liang, E.; Mao, Y. Triboelectric Touch-Free Screen Sensor for Noncontact Gesture Recognizing. Adv. Funct. Mater. 2020, 30, 1907893. [Google Scholar] [CrossRef]
- Sadasivuni, K.K.; Kafy, A.; Zhai, L.; Ko, H.-U.; Mun, S.; Kim, J. Transparent and Flexible Cellulose Nanocrystal/Reduced Graphene Oxide Film for Proximity Sensing. Small 2015, 11, 994–1002. [Google Scholar] [CrossRef]
- Franco, M.; Correia, V.; Marques, P.; Sousa, F.; Silva, R.; Figueiredo, B.R.; Bernardes, A.; Silva, R.P.; Lanceros-Mendez, S.; Costa, P. Environmentally Friendly Graphene-Based Conductive Inks for Multitouch Capacitive Sensing Surfaces. Adv. Mater. Interfaces 2021, 8, 2100578. [Google Scholar] [CrossRef]
- Tkachev, S.; Monteiro, M.; Santos, J.; Placidi, E.; Hassine, M.B.; Marques, P.; Ferreira, P.; Alpuim, P.; Capasso, A. Environmentally Friendly Graphene Inks for Touch Screen Sensors. Adv. Funct. Mater. 2021, 31, 2103287. [Google Scholar] [CrossRef]
- Dong, T.; Sun, Y.; Zhu, Z.; Wu, X.; Wang, J.; Shi, Y.; Xu, J.; Chen, K.; Yu, L. Monolithic Integration of Silicon Nanowire Networks as a Soft Wafer for Highly Stretchable and Transparent Electronics. Nano Lett. 2019, 19, 6235–6243. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Lee, S.; Cho, B.; Song, S.; Lee, T. Flexible Organic Memory Devices with Multilayer Graphene Electrodes. ACS Nano 2011, 5, 5995–6000. [Google Scholar] [CrossRef] [PubMed]
- Dugu, S.; Pavunny, S.P.; Limbu, T.B.; Weiner, B.R.; Morell, G.; Katiyar, R.S. A Graphene Integrated Highly Transparent Resistive Switching Memory Device. APL Mater. 2018, 6, 058503. [Google Scholar] [CrossRef]
- Kim, S.M.; Song, E.B.; Lee, S.; Zhu, J.; Seo, D.H.; Mecklenburg, M.; Seo, S.; Wang, K.L. Transparent and Flexible Graphene Charge-Trap Memory. ACS Nano 2012, 6, 7879–7884. [Google Scholar] [CrossRef]
- Kim, S.M.; Song, E.B.; Lee, S.; Zhou, J.; Seo, S.; Seo, D.H.; Wang, K.L. Flexible and Transparent Memory: Non-Volatile Memory Based on Graphene Channel Transistor for Flexible and Transparent Electronics Applications. In Proceedings of the 2012 4th IEEE International Memory Workshop (IMW 2012), Milan, Italy, 20–23 May 2012; pp. 3–6. [Google Scholar]
- Yao, J.; Lin, J.; Dai, Y.; Ruan, G.; Yan, Z.; Li, L.; Zhong, L.; Natelson, D.; Tour, J.M. Highly Transparent Nonvolatile Resistive Memory Devices from Silicon Oxide and Graphene. Nat. Commun. 2012, 3, 1101. [Google Scholar] [CrossRef]
- Yang, P.K.; Chang, W.Y.; Teng, P.Y.; Jeng, S.F.; Lin, S.J.; Chiu, P.W.; He, J.H. Fully Transparent Resistive Memory Employing Graphene Electrodes for Eliminating Undesired Surface Effects. Proc. IEEE 2013, 101, 1732–1739. [Google Scholar] [CrossRef]
- Kim, H.D.; Yun, M.J.; Lee, J.H.; Kim, K.H.; Kim, T.G. Transparent Multi-Level Resistive Switching Phenomena Observed in ITO/RGO/ITO Memory Cells by the Sol-Gel Dip-Coating Method. Sci. Rep. 2014, 4, 4614. [Google Scholar] [CrossRef]
- Wu, H.Y.; Lin, C.C.; Lin, C.H. Characteristics of Graphene-Oxide-Based Flexible and Transparent Resistive Switching Memory. Ceram. Int. 2015, 41, S823–S828. [Google Scholar] [CrossRef]
- Kim, K.L.; Lee, W.; Hwang, S.K.; Joo, S.H.; Cho, S.M.; Song, G.; Cho, S.H.; Jeong, B.; Hwang, I.; Ahn, J.-H.; et al. Epitaxial Growth of Thin Ferroelectric Polymer Films on Graphene Layer for Fully Transparent and Flexible Nonvolatile Memory. Nano Lett. 2016, 16, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Wang, X.; Wang, Z.; Cao, L.; Song, M.; Huang, X.; Liu, J.; Huang, W. Fully Solution-Processed Transparent Nonvolatile and Volatile Multifunctional Memory Devices from Conductive Polymer and Graphene Oxide. Adv. Electron. Mater. 2017, 3, 1700135. [Google Scholar] [CrossRef]
- Zhu, K.; Liang, X.; Yuan, B.; Villena, M.A.; Wen, C.; Wang, T.; Chen, S.; Hui, F.; Shi, Y.; Lanza, M. Graphene–Boron Nitride–Graphene Cross-Point Memristors with Three Stable Resistive States. ACS Appl. Mater. Interfaces 2019, 11, 37999–38005. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-Y.; Lee, J.; Jeon, J.; Im, J.; Jang, J.; Jin, S.-W.; Joung, H.; Yu, H.-C.; Nam, K.-N.; Park, H.-J.; et al. High-Performance Non-Volatile Resistive Switching Memory Based on a Polyimide/Graphene Oxide Nanocomposite. Polym. Chem. 2020, 11, 7685–7695. [Google Scholar] [CrossRef]
- Yoon, J.-S.; Lee, S.; Lee, J.; Jeong, J.; Yun, H.; Kang, B.; Baek, R.-H. Source/Drain Patterning FinFETs as Solution for Physical Area Scaling Toward 5-Nm Node. IEEE Access 2019, 7, 172290–172295. [Google Scholar] [CrossRef]
- Lu, H.-W.; Kane, A.A.; Parkinson, J.; Gao, Y.; Hajian, R.; Heltzen, M.; Goldsmith, B.; Aran, K. The Promise of Graphene-Based Transistors for Democratizing Multiomics Studies. Biosens. Bioelectron. 2022, 195, 113605. [Google Scholar] [CrossRef]
- Lemme, M.C.; Member, S.; Echtermeyer, T.J.; Baus, M.; Kurz, H. A Graphene Field-Effect Device. IEEE Electron. Dev. Lett. 2007, 28, 282–284. [Google Scholar] [CrossRef]
- Sun, Y.-L.; Xie, D.; Xu, J.-L.; Li, X.-M.; Zhang, C.; Dai, R.-X.; Li, X.; Meng, X.-J.; Zhu, H.-W. Tunable Transport Characteristics of Double-Gated Graphene Field-Effect Transistors Using P(VDF-TrFE) Ferroelectric Gating. Carbon 2016, 96, 695–700. [Google Scholar] [CrossRef]
- Vieira, N.C.S.; Borme, J.; Machado, G.; Cerqueira, F.; Freitas, P.P.; Zucolotto, V.; Peres, N.M.R.; Alpuim, P. Graphene Field-Effect Transistor Array with Integrated Electrolytic Gates Scaled to 200 mm. J. Phys. Condens. Matter 2016, 28, 085302. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Zhang, L.; Lee, S.; Dai, H. Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors. Science 2008, 319, 1229–1232. [Google Scholar] [CrossRef]
- Martini, L.; Chen, Z.; Mishra, N.; Barin, G.B.; Fantuzzi, P.; Ruffieux, P.; Fasel, R.; Feng, X.; Narita, A.; Coletti, C.; et al. Structure-Dependent Electrical Properties of Graphene Nanoribbon Devices with Graphene Electrodes. Carbon 2019, 146, 36–43. [Google Scholar] [CrossRef]
- Jangid, P.; Pathan, D.; Kottantharayil, A. Graphene Nanoribbon Transistors with High ION/IOFF Ratio and Mobility. Carbon 2018, 132, 65–70. [Google Scholar] [CrossRef]
- Lin, Y.-M.; Jenkins, K.A.; Valdes-Garcia, A.; Small, J.P.; Farmer, D.B.; Avouris, P. Operation of Graphene Transistors at Gigahertz Frequencies. Nano Lett. 2009, 9, 422–426. [Google Scholar] [CrossRef]
- Lin, Y.; Dimitrakopoulos, C.; Jenkins, K.A.; Farmer, D.B.; Chiu, H.; Grill, A.; Avouris, P. 100-GHz Transistors from Wafer-Scale Epitaxial Graphene. Science 2010, 327, 662. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Lin, Y.M.; Bol, A.A.; Jenkins, K.A.; Xia, F.; Farmer, D.B.; Zhu, Y.; Avouris, P. High-Frequency, Scaled Graphene Transistors on Diamond-like Carbon. Nature 2011, 472, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Sire, C.; Ardiaca, F.; Lepilliet, S.; Seo, J.-W.T.; Hersam, M.C.; Dambrine, G.; Happy, H.; Derycke, V. Flexible Gigahertz Transistors Derived from Solution-Based Single-Layer Graphene. Nano Lett. 2012, 12, 1184–1188. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Ha, T.-J.; Li, H.; Parrish, K.N.; Holt, M.; Dodabalapur, A.; Ruoff, R.S.; Akinwande, D. 25 GHz Embedded-Gate Graphene Transistors with High-K Dielectrics on Extremely Flexible Plastic Sheets. ACS Nano 2013, 7, 7744–7750. [Google Scholar] [CrossRef]
- Lan, Y.; Xu, Y.; Wu, Y.; Cao, Z.; Chen, T.; Zhou, J.; Wu, Y.; Chen, Y.; Yan, B.; Xu, R.; et al. Flexible Graphene Field-Effect Transistors With Extrinsic $f_\mathrmmax$ of 28 GHz. IEEE Electron. Device Lett. 2018, 39, 1944–1947. [Google Scholar] [CrossRef]
- Liu, C.; Ma, W.; Chen, M.; Ren, W.; Sun, D. A Vertical Silicon-Graphene-Germanium Transistor. Nat. Commun. 2019, 10, 4873. [Google Scholar] [CrossRef]
- Montanaro, A.; Wei, W.; De Fazio, D.; Sassi, U.; Soavi, G.; Aversa, P.; Ferrari, A.C.; Happy, H.; Legagneux, P.; Pallecchi, E. Optoelectronic Mixing with High-Frequency Graphene Transistors. Nat. Commun. 2021, 12, 2728. [Google Scholar] [CrossRef]
- Liao, L.; Lin, Y.C.; Bao, M.; Cheng, R.; Bai, J.; Liu, Y.; Qu, Y.; Wang, K.L.; Huang, Y.; Duan, X. High-Speed Graphene Transistors with a Self-Aligned Nanowire Gate. Nature 2010, 467, 305–308. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.M.; Valdes-Garcia, A.; Han, S.J.; Farmer, D.B.; Meric, I.; Sun, Y.; Wu, Y.; Dimitrakopoulos, C.; Grill, A.; Avouris, P.; et al. Wafer-Scale Graphene Integrated Circuit. Science 2011, 332, 1294–1297. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Bai, J.; Liao, L.; Zhou, H.; Chen, Y.; Liu, L.; Lin, Y.-C.; Jiang, S.; Huang, Y.; Duan, X. High-Frequency Self-Aligned Graphene Transistors with Transferred Gate Stacks. Proc. Natl. Acad. Sci. USA 2012, 109, 11588–11592. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.H.; Yu, C.; Li, J.; Liu, Q.B.; He, Z.Z.; Song, X.B.; Wang, J.J.; Cai, S.J. An Ultra Clean Self-Aligned Process for High Maximum Oscillation Frequency Graphene Transistors. Carbon 2014, 75, 249–254. [Google Scholar] [CrossRef]
- Yeh, C.H.; Lain, Y.W.; Chiu, Y.C.; Liao, C.H.; Moyano, D.R.; Hsu, S.S.H.; Chiu, P.W. Gigahertz Flexible Graphene Transistors for Microwave Integrated Circuits. ACS Nano 2014, 8, 7663–7670. [Google Scholar] [CrossRef]
- Han, S.J.; Garcia, A.V.; Oida, S.; Jenkins, K.A.; Haensch, W. Graphene Radio Frequency Receiver Integrated Circuit. Nat. Commun. 2014, 5, 3086. [Google Scholar] [CrossRef]
- Bianchi, M.; Guerriero, E.; Fiocco, M.; Alberti, R.; Polloni, L.; Behnam, A.; Carrion, E.A.; Pop, E.; Sordan, R. Scaling of Graphene Integrated Circuits. Nanoscale 2015, 7, 8076–8083. [Google Scholar] [CrossRef]
- Llinas, J.P.; Fairbrother, A.; Borin Barin, G.; Shi, W.; Lee, K.; Wu, S.; Yong Choi, B.; Braganza, R.; Lear, J.; Kau, N.; et al. Short-Channel Field-Effect Transistors with 9-Atom and 13-Atom Wide Graphene Nanoribbons. Nat. Commun. 2017, 8, 633. [Google Scholar] [CrossRef]
- Hanna, T.; Deltimple, N.; Khenissa, M.S.; Pallecchi, E.; Happy, H.; Frégonèse, S. 2.5 GHz Integrated Graphene RF Power Amplifier on SiC Substrate. Solid-State Electron. 2017, 127, 26–31. [Google Scholar] [CrossRef]
- Vaziri, S.; Lupina, G.; Henkel, C.; Smith, A.D.; Östling, M.; Dabrowski, J.; Lippert, G.; Mehr, W.; Lemme, M.C. A Graphene-Based Hot Electron Transistor. Nano Lett. 2013, 13, 1435–1439. [Google Scholar] [CrossRef]
- Liu, C.; Yang, X.-Q.; Ma, W.; Wang, X.-Z.; Jiang, H.-Y.; Ren, W.-C.; Sun, D.-M. A Silicon-Graphene-Silicon Transistor with an Improved Current Gain. J. Mater. Sci. Technol. 2022, 104, 127–130. [Google Scholar] [CrossRef]
- Mol, J.A.; Lau, C.S.; Lewis, W.J.M.; Sadeghi, H.; Roche, C.; Cnossen, A.; Warner, J.H.; Lambert, C.J.; Anderson, H.L.; Briggs, G.A.D. Graphene-Porphyrin Single-Molecule Transistors. Nanoscale 2015, 7, 13181–13185. [Google Scholar] [CrossRef] [PubMed]
- Fakih, I.; Durnan, O.; Mahvash, F.; Napal, I.; Centeno, A.; Zurutuza, A.; Yargeau, V.; Szkopek, T. Selective Ion Sensing with High Resolution Large Area Graphene Field Effect Transistor Arrays. Nat. Commun. 2020, 11, 3226. [Google Scholar] [CrossRef] [PubMed]
- Ning, J.; Wang, Y.; Feng, X.; Wang, B.; Dong, J.; Wang, D.; Yan, C.; Shen, X.; Wang, X.; Zhang, J.; et al. Flexible Field-Effect Transistors with a High on/off Current Ratio Based on Large-Area Single-Crystal Graphene. Carbon 2020, 163, 417–424. [Google Scholar] [CrossRef]
- Mutlu, Z.; Jacobse, P.H.; McCurdy, R.D.; Llinas, J.P.; Lin, Y.; Veber, G.C.; Fischer, F.R.; Crommie, M.F.; Bokor, J. Bottom-Up Synthesized Nanoporous Graphene Transistors. Adv. Funct. Mater. 2021, 31, 2103798. [Google Scholar] [CrossRef]
- Wu, F.; Tian, H.; Shen, Y.; Hou, Z.; Ren, J.; Gou, G.; Sun, Y.; Yang, Y.; Ren, T.-L. Vertical MoS2 Transistors with Sub-1-Nm Gate Lengths. Nature 2022, 603, 259–264. [Google Scholar] [CrossRef]
- Ernst, P.; Kozubek, R.; Madauß, L.; Sonntag, J.; Lorke, A.; Schleberger, M. Irradiation of Graphene Field Effect Transistors with Highly Charged Ions. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2016, 382, 71–75. [Google Scholar] [CrossRef]
Key Electrode Material | Reversible Capacity | Ref. No. |
---|---|---|
GNS | 1130 mAh/g at current 0.2 mA cm−2 | [50] |
GNS | 770 mA/g at 100th cycle | [51] |
GNSGNS/CNTGNS/Fullerene | 540 mAh/g730 mAh/g784 mAh/g | [52] |
GNS | 1348 mAh/g | [53] |
GNS | 1264 mAh/g at a current density of 100 mA/g | [54] |
GNP | 505 mAh/g | [55] |
Doped Graphene | >1040 mAh/g at a low rate of 50 mA/g | [56] |
Fluorinated graphene | 780 mAh/g | [57] |
Mesoporous GNS | 1040 mAh/g at current density of 100 mA/g | [58] |
MoO2/Graphene | 770 mAh/g at a current density of 540 mA/g | [61] |
Fe2O3 fiber/rGO | 1085.2 mAh/g at current density of 0.1 A/g | [62] |
Co3O4/AG | 845 mAh/g | [63] |
Co3O4/Graphene | 1015 mAh/g at the current density of 0.2 A/g | [64] |
CoCO3/porous graphene aerogelCo3O4/porous graphene aerogel | 1102 mAh/g at the current density of 100 mA/g1012 mAh/g at the current density of 100 mA/g | [65] |
Ni/NiO–graphene | 1156 mAh/g | [66] |
CuFeO2/rGOCu/CuFe2O4/rGO | 587 mAh/g at current density of 200 mA/g1102 mAh/g at current density of 800 mA/g | [67] |
MnO2/rGO | 222 mAh/g at current density of 5 A/g | [68] |
Tin oxide/graphene | 974 mAh/g | [69] |
Sandwich-like V2O5/graphene | 1006 mAh/g at current density of 0.5 A/g | [70] |
Ge/rGO | 814 mAh/g after at current density of 0.1 A/g | [71] |
Si/carbon/graphene | 2469 mAh/g at current density of 0.2 A/g | [72] |
SiOx/graphene | 1325.7 mAh/g | [73] |
Silicon/graphene aerogel | 1330 mAh/g at current density of 0.2 A/g | [74] |
SnO2/NiFe2O4/graphene | 731.5 mAh/g at current density of 200 mA/g | [75] |
Graphene-wrapped MnCO3/Mn3O4 | 1592.5 mAh/g at current density of 0.1 A/g | [76] |
Co(OH)2 nanosheets/ionic liquid modified graphene | 786 mAh/g | [80] |
Co3O4/graphene | 1100 mAh/g | [81] |
Graphene@α–Fe2O3 | 1338 mAh/g at current density of 200 mA/g | [82] |
Graphene/V2O5 | 438 mAh/g | [92] |
Graphene–silica assembly | 716.2 mAh/g | [94] |
SiOx/graphene–carboxymethylcellulose sodium | 1273.8 mAh/g at current density of 100 mA/g | [95] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sengupta, J.; Hussain, C.M. Graphene-Induced Performance Enhancement of Batteries, Touch Screens, Transparent Memory, and Integrated Circuits: A Critical Review on a Decade of Developments. Nanomaterials 2022, 12, 3146. https://doi.org/10.3390/nano12183146
Sengupta J, Hussain CM. Graphene-Induced Performance Enhancement of Batteries, Touch Screens, Transparent Memory, and Integrated Circuits: A Critical Review on a Decade of Developments. Nanomaterials. 2022; 12(18):3146. https://doi.org/10.3390/nano12183146
Chicago/Turabian StyleSengupta, Joydip, and Chaudhery Mustansar Hussain. 2022. "Graphene-Induced Performance Enhancement of Batteries, Touch Screens, Transparent Memory, and Integrated Circuits: A Critical Review on a Decade of Developments" Nanomaterials 12, no. 18: 3146. https://doi.org/10.3390/nano12183146
APA StyleSengupta, J., & Hussain, C. M. (2022). Graphene-Induced Performance Enhancement of Batteries, Touch Screens, Transparent Memory, and Integrated Circuits: A Critical Review on a Decade of Developments. Nanomaterials, 12(18), 3146. https://doi.org/10.3390/nano12183146