Synthesis and Characterization of Polyvinyl Chloride Matrix Composites with Modified Scrap Iron for Advanced Electronic, Photonic, and Optical Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Equipment
2.3. Methodology
2.3.1. Scrap Iron Digestion
2.3.2. Synthesis of Pure and Modified Iron Oxide
2.3.3. Synthesis of PVC composites films
3. Results and Discussion
3.1. X-ray Diffraction Analysis
3.2. Fourier Transform Infrared (FTIR) Spectroscopy
3.3. UV-Visible Spectroscopy
3.4. Direct Bandgap of PVC Composites
3.5. Indirect Bandgap of PVC Composites
3.6. Transmittance
3.7. Extinction Coefficient
3.8. Refractive Index
3.9. Urbach Energy
3.10. Optical Conductivity
3.11. Electrical Conductivity
3.12. Thermal Gravimetric Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nurazzi, N.M.; Asyraf, M.R.M.; Fatimah Athiyah, S.; Shazleen, S.S.; Rafiqah, S.A.; Harussani, M.M.; Kamarudin, S.H.; Razman, M.R.; Rahmah, M.; Zainudin, E.S.; et al. A Review on Mechanical Performance of Hybrid Natural Fiber Polymer Composites for Structural Applications. Polymers 2021, 13, 2170. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, R.; Sapuan, S.; Asyraf, M.; Dayana, D.; Amelia, J.; Rani, M.; Norrrahim, M.; Nurazzi, N.; Aisyah, H.; Sharma, S.; et al. Polymer Composites Filled with Metal Derivatives: A Review of Flame Retardants. Polymers 2021, 13, 1701. [Google Scholar] [CrossRef] [PubMed]
- Teja, A.S.; Koh, P.Y. Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater. 2009, 55, 22–45. [Google Scholar] [CrossRef]
- Sinha, S.; Devnani, G.L. Natural Fiber Composites: Processing, Characterization, Applications, and Advancements; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Kaur, R.; Singh, P.; Tanwar, S.; Varshney, G.; Yadav, S. Assessment of Bio-Based Polyurethanes: Perspective on Applications and Bio-Degradation. Macromol 2022, 2, 284–314. [Google Scholar] [CrossRef]
- Morgan, A.B.; Mukhopadhyay, P. A targeted review of bio-derived plasticizers with flame retardant functionality used in PVC. J. Mater. Sci. 2022, 57, 7155–7172. [Google Scholar] [CrossRef]
- Zhu, Y.; Tang, T.; Zhao, S.; Joralmon, D.; Poit, Z.; Ahire, B.; Keshav, S.; Raje, A.R.; Blair, J.; Zhang, Z.; et al. Recent advancements and applications in 3D printing of functional optics. Addit. Manuf. 2022, 52, 102682. [Google Scholar] [CrossRef]
- Kulkarni, A.A.; Doerk, G. Thin film block copolymer self-assembly for nanophotonics. Nanotechnology 2022, 33, 292001. [Google Scholar] [CrossRef] [PubMed]
- Aziz, S.; Brza, M.; Nofal, M.; Abdulwahid, R.; Hussen, S.; Hussein, A.; Karim, W. A Comprehensive Review on Optical Properties of Polymer Electrolytes and Composites. Materials 2020, 13, 3675. [Google Scholar] [CrossRef] [PubMed]
- Suh, J.; Tan, T.L.; Zhao, W.; Park, J.; Lin, D.-Y.; Park, T.-E.; Kim, J.; Jin, C.; Saigal, N.; Ghosh, S.; et al. Reconfiguring crystal and electronic structures of MoS2 by substitutional doping. Nat. Commun. 2018, 9, 199. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, K.; Sharma, N.; Gautam, P.B.; Sharma, R.; Mann, B.; Pandey, V. Atomic Absorption Spectroscopy and Flame Photometry. In Advanced Analytical Techniques in Dairy Chemistry; Springer: New York, NY, USA, 2022; pp. 219–247. [Google Scholar]
- Mahmoud, W.E.; Al-Ghamdi, A.A. The influence of Cd(ZnO) on the structure, optical and thermal stabilities of polyvinyl chloride nanocomposites. Polym. Compos. 2011, 32, 1143–1147. [Google Scholar] [CrossRef]
- Taha, T.A.; Hendawy, N.; El-Rabaie, S.; Esmat, A.; El-Mansy, M.K. Effect of NiO NPs doping on the structure and optical properties of PVC polymer films. Polym. Bull. 2019, 76, 4769–4784. [Google Scholar] [CrossRef]
- Aslam, M.; Qamar, M.T.; Rehman, A.U.; Soomro, M.T.; Ali, S.; Ismail, I.M.I.; Hameed, A. The evaluation of the photo-catalytic activity of magnetic and non-magnetic polymorphs of Fe2O3 in natural sunlight exposure: A comparison of photo-catalytic activity. Appl. Surf. Sci. 2018, 451, 128–140. [Google Scholar] [CrossRef]
- Mallakpour, S.; Javadpour, M. Effective strategy for the production of novel magnetite poly(vinyl chloride) nanocomposite films with iron oxide nanoparticles double-capped through citric acid and vitamin C. J. Vinyl Addit. Technol. 2017, 23, E4–E14. [Google Scholar] [CrossRef]
- Abouhaswa, A.S.; Taha, T.A. Tailoring the optical and dielectric properties of PVC/CuO nanocomposites. Polym. Bull. 2019, 77, 6005–6016. [Google Scholar] [CrossRef]
- Hasan, M.; Lee, M. Enhancement of the thermo-mechanical properties and efficacy of mixing technique in the preparation of graphene/PVC nanocomposites compared to carbon nanotubes/PVC. Prog. Nat. Sci. 2014, 24, 579–587. [Google Scholar] [CrossRef]
- Xu, W.; Zhou, Z.; Ge, M.; Pan, W.-P. Polyvinyl chloride/montmorillonite nanocomposites. J. Therm. Anal. Calorim. 2004, 78, 91–99. [Google Scholar] [CrossRef]
- Taha, T.A. Optical properties of PVC/Al2O3 nanocomposite films. Polym. Bull. 2019, 76, 903–918. [Google Scholar] [CrossRef]
- Yousif, E.; Abdallh, M.; Hashim, H.; Salih, N.; Salimon, J.; Abdullah, B.M.; Win, Y.-F. Optical properties of pure and modified poly(vinyl chloride). Int. J. Ind. Chem. 2013, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, M.A.; Ashraf, N.; Shahid, W.; Awais, M.; Durrani, A.K.; Shahzad, K.; Ikram, M. Nanophotonics: Fundamentals, Challenges, Future Prospects and Applied Applications. In Nonlinear Optics-Nonlinear Nanophotonics and Novel Materials for Nonlinear Optics; IntechOpen: London, UK, 2021. [Google Scholar]
- Iqbal, M.A.; Malik, M.; Shahid, W.; Din, S.Z.; Anwar, N.; Ikram, M.; Idrees, F. Materials for Photovoltaics: Overview, Generations, Recent Advancements and Future Prospects. Thin Films Photovolt. 2022, 5, 10.5772. [Google Scholar]
- Brotherton, S.D. Introduction to Thin Film Transistors: Physics and Technology of TFTs; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
Peak Assignments | Pure PVC | Fe2O3-PVC | 1% CDF-PVC | 3% CDF-PVC | 5% CDF-PVC |
---|---|---|---|---|---|
Wagging of CH2 (cm−1) | 1438 | 1438, 2930 | 1438 | 1438, 2930 | 1454 |
Rocking of CH2 (cm−1) | 961 | 976 | 961 | 976 | 961 |
Rocking of C-Cl (cm−1) | 684 | 654 | - | - | - |
Vibration of C-C (cm−1) | 1084 | 1069 | - | - | - |
Vibrational peak of PVC (cm−1) | 2930 | 2930 | 2930 | - | 2930 |
Cu-OH bonding (cm−1) | - | 1438 | 1438 | 1438 | 1454 |
Presence of PVC in NC (cm−1) | 1254 | 654, 1254 | 1254 | 1254 | 1269 |
Stretching in PVC (C-H IN CH-Cl) (cm−1) | 1254, 1069 | 1254, 1069 | 1254, 1069 | 1254 | 1269 |
Sr No. | PVC Composites | Direct Bandgap Energy (eV) | Indirect Bandgap Energy (eV) |
---|---|---|---|
1 | Pure PVC | 5.15 | 5.05 |
2 | Fe2O3-PVC | 5.13 | 4.99 |
3 | 1% CDF-PVC | 5.1 | 5 |
4 | 3% CDF-PVC | 5.11 | 4.99 |
5 | 5% CDF-PVC | 4.85 | 4.84 |
Sr No. | Samples | E0 (Urbach Energy) eV |
---|---|---|
1 | Pure PVC | 2.21 |
2 | Fe2O3-PVC | 2.66 |
3 | 1% CDF-PVC | 4.07 |
4 | 3% CDF-PVC | 4.33 |
5 | 5% CDF-PVC | 4.5 |
Sr No. | Sample ID | T10 (°C) | Tmax (°C) |
---|---|---|---|
1 | Pure PVC | 267 | 321 |
2 | Fe2O3-PVC | 248 | 311 |
3 | 5% CDF-PVC | 263 | 318 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashmi, S.U.M.; Iqbal, M.A.; Malik, M.; Qamar, M.T.; Khan, M.; Zahid, A.; Islam, M.R.; Al-Bahrani, M.; Morsy, K.; Lai, W.-C. Synthesis and Characterization of Polyvinyl Chloride Matrix Composites with Modified Scrap Iron for Advanced Electronic, Photonic, and Optical Systems. Nanomaterials 2022, 12, 3147. https://doi.org/10.3390/nano12183147
Hashmi SUM, Iqbal MA, Malik M, Qamar MT, Khan M, Zahid A, Islam MR, Al-Bahrani M, Morsy K, Lai W-C. Synthesis and Characterization of Polyvinyl Chloride Matrix Composites with Modified Scrap Iron for Advanced Electronic, Photonic, and Optical Systems. Nanomaterials. 2022; 12(18):3147. https://doi.org/10.3390/nano12183147
Chicago/Turabian StyleHashmi, Syed Usama Mauood, Muhammad Aamir Iqbal, Maria Malik, Muhammad Tariq Qamar, Maham Khan, Abu Zahid, Md. Rasidul Islam, Mohammed Al-Bahrani, Kareem Morsy, and Wen-Cheng Lai. 2022. "Synthesis and Characterization of Polyvinyl Chloride Matrix Composites with Modified Scrap Iron for Advanced Electronic, Photonic, and Optical Systems" Nanomaterials 12, no. 18: 3147. https://doi.org/10.3390/nano12183147
APA StyleHashmi, S. U. M., Iqbal, M. A., Malik, M., Qamar, M. T., Khan, M., Zahid, A., Islam, M. R., Al-Bahrani, M., Morsy, K., & Lai, W. -C. (2022). Synthesis and Characterization of Polyvinyl Chloride Matrix Composites with Modified Scrap Iron for Advanced Electronic, Photonic, and Optical Systems. Nanomaterials, 12(18), 3147. https://doi.org/10.3390/nano12183147