Chemical Transformation Induced Core–Shell Ni2P@Fe2P Heterostructures toward Efficient Electrocatalytic Oxygen Evolution
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guan, J.; Shao, L.; Yu, L.; Wang, S.; Shi, X.; Cai, J.; Sun, Z. Two-Dimensional Mg0.2V2O5·nH2O Nanobelts Derived from V4C3 MXenes for Highly Stable Aqueous Zinc Ion Batteries. Chem. Eng. J. 2022, 443, 136502. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J.; Cai, P.; Wen, Z. An Electrochemically Neutralized Energy-Assisted Low-Cost Acid-Alkaline Electrolyzer for Energy-Saving Electrolysis Hydrogen Generation. J. Mater. Chem. A 2018, 6, 4948–4954. [Google Scholar] [CrossRef]
- Liu, P.; Liu, W.; Huang, Y.; Li, P.; Yan, J.; Liu, K. Mesoporous Hollow Carbon Spheres Boosted, Integrated High Performance Aqueous Zn-Ion Energy Storage. Energy Storage Mater. 2020, 25, 858–865. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, Q.; Zhu, Y.; Du, Y.; Yang, W.; Chen, Y.; Li, Y.; Wang, S. NiFeMn-Layered Double Hydroxides Linked by Graphene as High-Performance Electrocatalysts for Oxygen Evolution Reaction. Nanomaterials 2022, 12, 2200. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Heo, J.N.; Do, J.Y.; Chava, R.K.; Kang, M. Electrochemical Synergies of Heterostructured Fe2O3-MnO Catalyst for Oxygen Evolution Reaction in Alkaline Water Splitting. Nanomaterials 2019, 9, 1486. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Yi, P.; Sun, J.; Li, C.; Liu, R.; Sun, J.-K. The Scalable Solid-State Synthesis of a Ni5P4/Ni2P–FeNi Alloy Encapsulated into a Hierarchical Porous Carbon Framework for Efficient Oxygen Evolution Reactions. Nanomaterials 2022, 12, 1848. [Google Scholar] [CrossRef]
- Shang, X.; Chen, W.; Jiang, Z.-J.; Song, C.; Jiang, Z. In Situ Growth of SeOx Films on the Surface of Ni–Fe–Selenide Nanosheets as Highly Active and Stable Electrocatalysts for the Oxygen Evolution Reaction. Mater. Adv. 2022, 3, 2546–2557. [Google Scholar] [CrossRef]
- Jeon, J.; Park, K.R.; Kim, K.M.; Ko, D.; Han, H.; Oh, N.; Yeo, S.; Ahn, C.; Mhin, S. CoFeS2@CoS2 Nanocubes Entangled with CNT for Efficient Bifunctional Performance for Oxygen Evolution and Oxygen Reduction Reactions. Nanomaterials 2022, 12, 983. [Google Scholar] [CrossRef]
- Liu, D.; Ai, H.; Li, J.; Fang, M.; Chen, M.; Liu, D.; Du, X.; Zhou, P.; Li, F.; Lo, K.H.; et al. Surface Reconstruction and Phase Transition on Vanadium–Cobalt–Iron Trimetal Nitrides to Form Active Oxyhydroxide for Enhanced Electrocatalytic Water Oxidation. Adv. Energy Mater. 2020, 10, 2002464. [Google Scholar] [CrossRef]
- Li, Z.; Dou, X.; Zhao, Y.; Wu, C. Enhanced Oxygen Evolution Reaction of Metallic Nickel Phosphide Nanosheets by Surface Modification. Inorg. Chem. Front. 2016, 3, 1021–1027. [Google Scholar] [CrossRef]
- Wang, M.; Lin, M.; Li, J.; Huang, L.; Zhuang, Z.; Lin, C.; Zhou, L.; Mai, L. Metal–Organic Framework Derived Carbon-Confined Ni 2 P Nanocrystals Supported on Graphene for an Efficient Oxygen Evolution Reaction. Chem. Commun. 2017, 53, 8372–8375. [Google Scholar] [CrossRef]
- Cheng, X.; Pan, Z.; Lei, C.; Jin, Y.; Yang, B.; Li, Z.; Zhang, X.; Lei, L.; Yuan, C.; Hou, Y. A Strongly Coupled 3D Ternary Fe2O3 @Ni2P/Ni(PO3)2 Hybrid for Enhanced Electrocatalytic Oxygen Evolution at Ultra-High Current Densities. J. Mater. Chem. A 2019, 7, 965–971. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Y.; Hao, H.; Yuan, M.; Lv, Z.; Xu, L.; Wei, B. In Situ Unraveling Surface Reconstruction of Ni5P4@FeP Nanosheet Array for Superior Alkaline Oxygen Evolution Reaction. Appl. Catal. B Environ. 2022, 305, 121033. [Google Scholar] [CrossRef]
- Battiato, S.; Urso, M.; Cosentino, S.; Pellegrino, A.L.; Mirabella, S.; Terrasi, A. Optimization of Oxygen Evolution Reaction with Electroless Deposited Ni–P Catalytic Nanocoating. Nanomaterials 2021, 11, 3010. [Google Scholar] [CrossRef]
- Wang, J.; Niu, Y.; Teng, X.; Gong, S.; Huang, J.; Xu, M.; Chen, Z. Construction of Three-Dimensionally Ordered Macroporous Bimetal Phosphides as Bifunctional Electrocatalysts for Highly Efficient Water Splitting. J. Mater. Chem. A 2020, 8, 24572–24578. [Google Scholar] [CrossRef]
- Costa, J.D.; Lado, J.L.; Carbó-Argibay, E.; Paz, E.; Gallo, J.; Cerqueira, M.F.; Rodríguez-Abreu, C.; Kovnir, K.; Kolen’ko, Y.V. Electrocatalytic Performance and Stability of Nanostructured Fe–Ni Pyrite-Type Diphosphide Catalyst Supported on Carbon Paper. J. Phys. Chem. C 2016, 120, 16537–16544. [Google Scholar] [CrossRef]
- Lu, X.; Zhao, C. Electrodeposition of Hierarchically Structured Three-Dimensional Nickel–Iron Electrodes for Efficient Oxygen Evolution at High Current Densities. Nat. Commun. 2015, 6, 6616. [Google Scholar] [CrossRef]
- Yu, Z.; Li, Y.; Martin-Diaconescu, V.; Simonelli, L.; Ruiz Esquius, J.; Amorim, I.; Araujo, A.; Meng, L.; Faria, J.L.; Liu, L. Highly Efficient and Stable Saline Water Electrolysis Enabled by Self-Supported Nickel-Iron Phosphosulfide Nanotubes with Heterointerfaces and Under-Coordinated Metal Active Sites. Adv. Funct. Mater. 2022, 2206138. [Google Scholar] [CrossRef]
- Yu, X.; Chen, W.; Cai, J.; Lu, X.; Sun, Z. Oxygen Vacancy-Rich MnO Nanoflakes/N-Doped Carbon Nanotubes Modified Separator Enabling Chemisorption and Catalytic Conversion of Polysulfides for Li-S Batteries. J. Colloid Interface Sci. 2022, 610, 407–417. [Google Scholar] [CrossRef]
- Sun, J.; Xue, H.; Guo, N.; Song, T.; Hao, Y.; Sun, J.; Zhang, J.; Wang, Q. Synergetic Metal Defect and Surface Chemical Reconstruction into NiCo2S4/ZnS Heterojunction to Achieve Outstanding Oxygen Evolution Performance. Angew. Chem. Int. Ed. 2021, 60, 19435–19441. [Google Scholar] [CrossRef]
- Wu, T.; Song, E.; Zhang, S.; Luo, M.; Zhao, C.; Zhao, W.; Liu, J.; Huang, F. Engineering Metallic Heterostructure Based on Ni3N and 2M-MoS2 for Alkaline Water Electrolysis with Industry-Compatible Current Density and Stability. Adv. Mater. 2022, 34, 2108505. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Zhao, H.; Huang, B.; Xu, L.; Luo, M.; Wang, J.; Luo, F.; Du, Y.; Yan, C.-H. Efficient Optimization of Electron/Oxygen Pathway by Constructing Ceria/Hydroxide Interface for Highly Active Oxygen Evolution Reaction. Adv. Funct. Mater. 2020, 30, 1908367. [Google Scholar] [CrossRef]
- Chen, M.; Li, H.; Wu, C.; Liang, Y.; Qi, J.; Li, J.; Shangguan, E.; Zhang, W.; Cao, R. Interfacial Engineering of Heterostructured Co(OH)2/NiP x Nanosheets for Enhanced Oxygen Evolution Reaction. Adv. Funct. Mater. 2022, 2206407. [Google Scholar] [CrossRef]
- Ni, S.; Qu, H.; Xu, Z.; Zhu, X.; Xing, H.; Wang, L.; Yu, J.; Liu, H.; Chen, C.; Yang, L. Interfacial Engineering of the NiSe2/FeSe2 p-p Heterojunction for Promoting Oxygen Evolution Reaction and Electrocatalytic Urea Oxidation. Appl. Catal. B Environ. 2021, 299, 120638. [Google Scholar] [CrossRef]
- Dutta, S.; Indra, A.; Feng, Y.; Song, T.; Paik, U. Self-Supported Nickel Iron Layered Double Hydroxide-Nickel Selenide Electrocatalyst for Superior Water Splitting Activity. ACS Appl. Mater. Interfaces 2017, 9, 33766–33774. [Google Scholar] [CrossRef] [PubMed]
- Bernasconi, R.; Khalil, M.I.; Cakmakci, D.S.; Bektas, Y.; Nobili, L.; Magagnin, L.; Lenardi, C. Electrocatalytic Layers for Hydrogen Evolution Reaction Based on Nickel Phosphides: Cost-Effective Fabrication and XPS Characterization. J. Mater. Sci. 2022, 57, 9370–9388. [Google Scholar] [CrossRef]
- Wan, K.; Luo, J.; Zhou, C.; Zhang, T.; Arbiol, J.; Lu, X.; Mao, B.; Zhang, X.; Fransaer, J. Hierarchical Porous Ni3S4 with Enriched High-Valence Ni Sites as a Robust Electrocatalyst for Efficient Oxygen Evolution Reaction. Adv. Funct. Mater. 2019, 29, 1900315. [Google Scholar] [CrossRef]
- Song, H.; Li, J.; Sheng, G.; Zhang, Y.; Mohamad, A.A.; Luo, J.; Zhong, Z.; Shao, W. Construction of Core–Shell CoMoO4@γ-FeOOH Nanosheets for Efficient Oxygen Evolution Reaction. Nanomaterials 2022, 12, 2215. [Google Scholar] [CrossRef]
- Li, X.; Liu, C.; Fang, Z.; Xu, L.; Lu, C.; Hou, W. Ultrafast Room-Temperature Synthesis of Self-Supported NiFe-Layered Double Hydroxide as Large-Current–Density Oxygen Evolution Electrocatalyst. Small 2022, 18, 2104354. [Google Scholar] [CrossRef]
- Cai, Z.; Bu, X.; Wang, P.; Su, W.; Wei, R.; Ho, J.C.; Yang, J.; Wang, X. Simple and Cost Effective Fabrication of 3D Porous Core–Shell Ni Nanochains@NiFe Layered Double Hydroxide Nanosheet Bifunctional Electrocatalysts for Overall Water Splitting. J. Mater. Chem. A 2019, 7, 21722–21729. [Google Scholar] [CrossRef]
- Zhang, P.; Li, L.; Nordlund, D.; Chen, H.; Fan, L.; Zhang, B.; Sheng, X.; Daniel, Q.; Sun, L. Dendritic Core-Shell Nickel-Iron-Copper Metal/Metal Oxide Electrode for Efficient Electrocatalytic Water Oxidation. Nat. Commun. 2018, 9, 381. [Google Scholar] [CrossRef]
- Senthil, R.A.; Pan, J.; Yang, X.; Sun, Y. Nickel Foam-Supported NiFe Layered Double Hydroxides Nanoflakes Array as a Greatly Enhanced Electrocatalyst for Oxygen Evolution Reaction. Int. J. Hydrogen Energy 2018, 43, 21824–21834. [Google Scholar] [CrossRef]
- Liu, X.; Gong, M.; Xiao, D.; Deng, S.; Liang, J.; Zhao, T.; Lu, Y.; Shen, T.; Zhang, J.; Wang, D. Turning Waste into Treasure: Regulating the Oxygen Corrosion on Fe Foam for Efficient Electrocatalysis. Small 2020, 16, 2000663. [Google Scholar] [CrossRef]
- Che, Q.; Li, Q.; Chen, X.; Tan, Y.; Xu, X. Assembling Amorphous (Fe-Ni)Co-OH/Ni3S2 Nanohybrids with S-Vacancy and Interfacial Effects as an Ultra-Highly Efficient Electrocatalyst: Inner Investigation of Mechanism for Alkaline Water-to-Hydrogen/Oxygen Conversion. Appl. Catal. B Environ. 2020, 263, 118338. [Google Scholar] [CrossRef]
- Zhu, G.; Li, X.; Liu, Y.; Mao, Y.; Liang, Z.; Ji, Z.; Shen, X.; Sun, J.; Cheng, X.; Mao, J. Scalable Surface Engineering of Commercial Metal Foams for Defect-Rich Hydroxides towards Improved Oxygen Evolution. J. Mater. Chem. A 2020, 8, 12603–12612. [Google Scholar] [CrossRef]
- Jin, Y.; Huang, S.; Yue, X.; Shu, C.; Shen, P.K. Highly Stable and Efficient Non-Precious Metal Electrocatalysts of Mo-Doped NiOOH Nanosheets for Oxygen Evolution Reaction. Int. J. Hydrogen Energy 2018, 43, 12140–12145. [Google Scholar] [CrossRef]
- Qiu, C.; He, S.; Wang, Y.; Wang, Q.; Zhao, C. Interfacial Engineering FeOOH/CoO Nanoneedle Array for Efficient Overall Water Splitting Driven by Solar Energy. Chem.–Eur. J. 2020, 26, 4120–4127. [Google Scholar] [CrossRef]
- Liu, T.; Diao, P. Nickel Foam Supported Cr-Doped NiCo2O4/FeOOH Nanoneedle Arrays as a High-Performance Bifunctional Electrocatalyst for Overall Water Splitting. Nano Res. 2020, 13, 3299–3309. [Google Scholar] [CrossRef]
- Yu, L.; Wu, L.; McElhenny, B.; Song, S.; Luo, D.; Zhang, F.; Yu, Y.; Chen, S.; Ren, Z. Ultrafast Room-Temperature Synthesis of Porous S-Doped Ni/Fe (Oxy)Hydroxide Electrodes for Oxygen Evolution Catalysis in Seawater Splitting. Energy Environ. Sci. 2020, 13, 3439–3446. [Google Scholar] [CrossRef]
- Chi, J.; Yu, H.; Jiang, G.; Jia, J.; Qin, B.; Yi, B.; Shao, Z. Construction of Orderly Hierarchical FeOOH/NiFe Layered Double Hydroxides Supported on Cobaltous Carbonate Hydroxide Nanowire Arrays for a Highly Efficient Oxygen Evolution Reaction. J. Mater. Chem. A 2018, 6, 3397–3401. [Google Scholar] [CrossRef]
- Zhang, X.; Yi, H.; Jin, M.; Lian, Q.; Huang, Y.; Ai, Z.; Huang, R.; Zuo, Z.; Tang, C.; Amini, A.; et al. In Situ Reconstructed Zn Doped FexNi(1−x) OOH Catalyst for Efficient and Ultrastable Oxygen Evolution Reaction at High Current Densities. Small 2022, 2203710. [Google Scholar] [CrossRef]
- Feng, J.-X.; Ye, S.-H.; Xu, H.; Tong, Y.-X.; Li, G.-R. Design and Synthesis of FeOOH/CeO 2 Heterolayered Nanotube Electrocatalysts for the Oxygen Evolution Reaction. Adv. Mater. 2016, 28, 4698–4703. [Google Scholar] [CrossRef]
- Liang, J.; Gao, X.; Guo, B.; Ding, Y.; Yan, J.; Guo, Z.; Tse, E.C.M.; Liu, J. Ferrocene-Based Metal–Organic Framework Nanosheets as a Robust Oxygen Evolution Catalyst. Angew. Chem. Int. Ed. 2021, 60, 12770–12774. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Tian, Y.; Sakthivel, T.; Liu, H.; Guo, S.; Zeng, H.; Dai, Z. Synergizing Hydrogen Spillover and Deprotonation by the Internal Polarization Field in a MoS 2 /NiPS 3 Vertical Heterostructure for Boosted Water Electrolysis. Adv. Mater. 2022, 2203615. [Google Scholar] [CrossRef]
- Nai, J.; Xu, X.; Xie, Q.; Lu, G.; Wang, Y.; Luan, D.; Tao, X.; Lou, X.W. Construction of Ni(CN)2/NiSe2 Heterostructures by Stepwise Topochemical Pathways for Efficient Electrocatalytic Oxygen Evolution. Adv. Mater. 2022, 34, 2104405. [Google Scholar] [CrossRef]
- Li, N.; Bediako, D.K.; Hadt, R.G.; Hayes, D.; Kempa, T.J.; von Cube, F.; Bell, D.C.; Chen, L.X.; Nocera, D.G. Influence of Iron Doping on Tetravalent Nickel Content in Catalytic Oxygen Evolving Films. Proc. Natl. Acad. Sci. USA 2017, 114, 1486–1491. [Google Scholar] [CrossRef]
- Han, M.; Wang, N.; Zhang, B.; Xia, Y.; Li, J.; Han, J.; Yao, K.; Gao, C.; He, C.; Liu, Y.; et al. High-Valent Nickel Promoted by Atomically Embedded Copper for Efficient Water Oxidation. ACS Catal. 2020, 10, 9725–9734. [Google Scholar] [CrossRef]
- Lee, W.H.; Han, M.H.; Ko, Y.-J.; Min, B.K.; Chae, K.H.; Oh, H.-S. Electrode Reconstruction Strategy for Oxygen Evolution Reaction: Maintaining Fe-CoOOH Phase with Intermediate-Spin State during Electrolysis. Nat. Commun. 2022, 13, 605. [Google Scholar] [CrossRef]
- Xu, Q.; Jiang, H.; Duan, X.; Jiang, Z.; Hu, Y.; Boettcher, S.W.; Zhang, W.; Guo, S.; Li, C. Fluorination-Enabled Reconstruction of NiFe Electrocatalysts for Efficient Water Oxidation. Nano Lett. 2021, 21, 492–499. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Zhao, S.; She, S.; Zhang, F.; Chen, Y.; Williams, T.; Gengenbach, T.; Zu, L.; Mao, H.; et al. Anion Etching for Accessing Rapid and Deep Self-Reconstruction of Precatalysts for Water Oxidation. Matter 2020, 3, 2124–2137. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, H.; Li, J.; Sheng, G.; Yin, R.; Fang, Y.; Zhong, S.; Luo, J.; Wang, Z.; Mohamad, A.A.; Shao, W. Chemical Transformation Induced Core–Shell Ni2P@Fe2P Heterostructures toward Efficient Electrocatalytic Oxygen Evolution. Nanomaterials 2022, 12, 3153. https://doi.org/10.3390/nano12183153
Song H, Li J, Sheng G, Yin R, Fang Y, Zhong S, Luo J, Wang Z, Mohamad AA, Shao W. Chemical Transformation Induced Core–Shell Ni2P@Fe2P Heterostructures toward Efficient Electrocatalytic Oxygen Evolution. Nanomaterials. 2022; 12(18):3153. https://doi.org/10.3390/nano12183153
Chicago/Turabian StyleSong, Huijun, Jingjing Li, Guan Sheng, Ruilian Yin, Yanghang Fang, Shigui Zhong, Juan Luo, Zhi Wang, Ahmad Azmin Mohamad, and Wei Shao. 2022. "Chemical Transformation Induced Core–Shell Ni2P@Fe2P Heterostructures toward Efficient Electrocatalytic Oxygen Evolution" Nanomaterials 12, no. 18: 3153. https://doi.org/10.3390/nano12183153
APA StyleSong, H., Li, J., Sheng, G., Yin, R., Fang, Y., Zhong, S., Luo, J., Wang, Z., Mohamad, A. A., & Shao, W. (2022). Chemical Transformation Induced Core–Shell Ni2P@Fe2P Heterostructures toward Efficient Electrocatalytic Oxygen Evolution. Nanomaterials, 12(18), 3153. https://doi.org/10.3390/nano12183153