Metal-Organic Framework-Derived NiSe Embedded into a Porous Multi-Heteroatom Self-Doped Carbon Matrix as a Promising Anode for Sodium-Ion Battery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of NiSe@C Composites
2.2. Materials Characterization and Electrochemical Measurements
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.W.; Hu, M.X.; Lv, Q.; Huang, Z.-H.; Kang, F.; Lv, R. Advanced Materials for Sodium-Ion Capacitors with Superior Energy-Power Properties: Progress and Perspectives. Small 2020, 16, 1902843. [Google Scholar] [CrossRef]
- Tang, L.; Zhang, J.; Li, Z.; Liu, X.; Xu, Q.; Liu, H.; Wang, Y.; Xia, Y.; Ma, Z. Using Na7V4(P2O7)4(PO4) with superior Na storage performance as bipolar electrodes to build a novel high-energy-density symmetric sodium-ion full battery. J. Power Sources 2020, 451, 227734. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Myung, S.T.; Sun, Y.K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614. [Google Scholar] [CrossRef]
- Tan, H.; Feng, Y.; Rui, X.; Yu, Y.; Huang, S. Metal Chalcogenides: Paving the Way for High-Performance Sodium/Potassium-Ion Batteries. Small Methods 2019, 4, 1900563. [Google Scholar] [CrossRef]
- Ye, J.; Zheng, Z.; Xia, G.; Hu, C. Fe3Se4 nanoparticles confined in hollow carbon nanocages for high-performance sodium-ion batteries. Appl. Surf. Sci. 2020, 519, 146260. [Google Scholar] [CrossRef]
- Lin, H.; Li, M.; Yang, X.; Yu, D.; Zeng, Y.; Wang, C.; Chen, G.; Du, F. Nanosheets-Assembled CuSe Crystal Pillar as a Stable and High-Power Anode for Sodium-Ion and Potassium-Ion Batteries. Adv. Energy Mater. 2019, 9, 1900323. [Google Scholar] [CrossRef]
- Ye, S.; Wang, L.; Liu, F.; Shi, P.; Yu, Y. Integration of homogeneous and heterogeneous nucleation growth via 3D alloy framework for stable Na/K metal anode. eScience 2021, 1, 75–82. [Google Scholar] [CrossRef]
- Park, G.D.; Cho, J.S.; Kang, Y.C. Sodium-ion storage properties of nickel sulfide hollow nanospheres/reduced graphene oxide composite powders prepared by a spray drying process and the nanoscale Kirkendall effect. Nanoscale 2015, 7, 16781–16788. [Google Scholar] [CrossRef]
- Park, G.D.; Kim, J.H.; Park, S.-K.; Kang, Y.C. MoSe2 embedded CNT-reduced graphene oxide composite microsphere with superior sodium ion storage and electrocatalytic hydrogen evolution performances. ACS Appl. Mater. Interfaces 2017, 9, 10673–10683. [Google Scholar] [CrossRef]
- Li, H.; Jiang, J.; Huang, J.; Wang, Y.; Peng, Y.; Zhang, Y.; Hwang, B.-J.; Zhao, J. Investigation of the Na Storage Property of One-Dimensional Cu2−xSe Nanorods. ACS Appl. Mater. Interfaces 2018, 10, 13491–13498. [Google Scholar] [CrossRef] [PubMed]
- Jia, M.; Jin, Y.; Zhao, P.; Zhao, C.; Jia, M.; Wang, L.; He, X. Hollow NiCoSe2 microspheres@N-doped carbon as high-performance pseudocapacitive anode materials for sodium-ion batteries. Electrochim. Acta 2019, 310, 230–239. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Q.; Zhu, J.; Yan, Q.; Dou, S.X.; Sun, W. Nanostructured Metal Chalcogenides for Energy Storage and Electrocatalysis. Adv. Funct. Mater. 2017, 27, 1702317. [Google Scholar] [CrossRef]
- Yue, J.L.; Sun, Q.; Fu, Z.W. Cu2Se with facile synthesis as a cathode material for rechargeable sodium batteries. Chem. Commun. 2013, 49, 5868–5870. [Google Scholar] [CrossRef]
- Ali, Z.; Tang, T.; Huang, X.; Wang, Y.; Asif, M.; Hou, Y. Cobalt selenide decorated carbon spheres for excellent cycling performance of sodium-ion batteries. Energy Storage Mater. 2018, 13, 19–28. [Google Scholar] [CrossRef]
- Kong, F.; Lv, L.; Gu, Y.; Tao, S.; Jiang, X.; Qian, B.; Gao, L. Nano-sized FeSe2 anchored on reduced graphene oxide as a promising anode material for lithium-ion and sodium-ion batteries. J. Mater. Sci. 2018, 54, 4225–4235. [Google Scholar] [CrossRef]
- Su, C.; Ru, Q.; Cheng, S.; Gao, Y.; Chen, F.; Zhao, L.; Ling, F.C.-C. 3D pollen-scaffolded NiSe composite encapsulated by MOF-derived carbon shell as a high-low temperature anode for Na-ion storage. Compos. B Eng. 2019, 179, 107538. [Google Scholar] [CrossRef]
- Oh, S.H.; Cho, J.S. Hierarchical (Ni,Co)Se2/CNT hybrid microspheres consisting of a porous yolk and embossed hollow thin shell for high-performance anodes in sodium-ion batteries. J. Alloys Compd. 2019, 806, 1029–1038. [Google Scholar] [CrossRef]
- Ge, P.; Li, S.; Xu, L.; Zou, K.; Gao, X.; Cao, X.; Zou, G.; Hou, H.; Ji, X. Hierarchical Hollow-Microsphere Metal-Selenide@Carbon Composites with Rational Surface Engineering for Advanced Sodium Storage. Adv. Energy Mater. 2019, 9, 1803035. [Google Scholar] [CrossRef]
- Ma, G.; Li, C.; Liu, F.; Majeed, M.K.; Feng, Z.; Cui, Y.; Yang, J.; Qian, Y. Metal–organic framework-derived Co0.85Se nanoparticles in N-doped carbon as a high-rate and long-lifespan anode material for potassium ion batteries. Mater. Today Energy 2018, 10, 241–248. [Google Scholar] [CrossRef]
- Lu, S.; Wu, H.; Hou, J.; Liu, L.; Li, J.; Harris, C.J.; Lao, C.-Y.; Guo, Y.; Xi, K.; Ding, S.; et al. Phase boundary engineering of metal–organic-framework-derived carbonaceous nickel selenides for sodium-ion batteries. Nano Res. 2020, 13, 2289–2298. [Google Scholar] [CrossRef]
- Xu, X.; Liu, J.; Liu, J.; Ouyang, L.; Hu, R.; Wang, H.; Yang, L.; Zhu, M. A General Metal–Organic Framework (MOF)-Derived Selenidation Strategy for In Situ Carbon-Encapsulated Metal Selenides as High-Rate Anodes for Na-Ion Batteries. Adv. Funct. Mater. 2018, 28, 1707573. [Google Scholar] [CrossRef]
- Cheng, J.; Zhao, D.; Fan, L.; Wu, X.; Wang, M.; Wu, H.; Guan, B.; Zhang, N.; Sun, K. A Conductive Ni2P Nanoporous Composite with a 3D Structure Derived from a Metal–Organic Framework for Lithium-Sulfur Batteries. Chemistry 2018, 24, 13253–13258. [Google Scholar] [CrossRef]
- Zhong, M.; Kong, L.; Li, N.; Liu, Y.-Y.; Zhu, J.; Bu, X.-H. Synthesis of MOF-derived nanostructures and their applications as anodes in lithium and sodium-ion batteries. Coordin. Chem. Rev. 2019, 388, 172–201. [Google Scholar] [CrossRef]
- Niu, F.; Yang, J.; Wang, N.; Zhang, D.; Fan, W.; Yang, J.; Qian, Y. MoSe2-Covered N, P-Doped Carbon Nanosheets as a Long-Life and High-Rate Anode Material for Sodium-Ion Batteries. Adv. Funct. Mater. 2017, 27, 1700522. [Google Scholar] [CrossRef]
- Shi, X.; Yu, J.; Liu, Q.; Shao, L.; Zhang, Y.; Sun, Z.; Huang, H. Metal–Organic-Framework-Derived N-, P-, and O-Codoped Nickel/Carbon Composites Homogeneously Decorated on Reduced Graphene Oxide for Energy Storage. ACS Appl. Nano Mater. 2020, 3, 5625–5636. [Google Scholar] [CrossRef]
- Shi, X.; Yu, J.; Huang, J.; Chen, B.; Fang, L.; Shao, L.; Sun, Z. Metal–organic framework derived high-content N, P and O-codoped Co/C composites as electrode materials for high-performance supercapacitors. J. Power Sources 2020, 467, 228304. [Google Scholar] [CrossRef]
- Shuang, W.; Huang, H.; Kong, L.; Zhong, M.; Li, A.; Wang, D.; Xu, Y.; Bu, X.-H. Nitrogen-doped carbon shell-confined Ni3S2 composite nanosheets derived from Ni-MOF for high-performance sodium-ion battery anodes. Nano Energy 2019, 62, 154–163. [Google Scholar] [CrossRef]
- Yang, J.; Yang, N.; Xu, Q.; Pearlie, L.S.; Zhang, Y.; Hong, Y.; Wang, Q.; Wang, W.; Yan, Q.; Dong, X. Bioinspired Controlled Synthesis of NiSe/Ni2P Nanoparticles Decorated 3D Porous Carbon for Li/Na Ion Batteries. ACS Sustain. Chem. Eng. 2019, 7, 13217–13225. [Google Scholar] [CrossRef]
- Shi, X.; Liu, Q.; Liang, W.; Chen, B.; Shao, L.; Cai, J.; Sun, Z.; Zhang, Y.; Huang, H.; Wu, Y. Space-Confined Engineering Boosted High-Performance of Ultrafine Nickel Selenide Nanocomposites for Sodium-Ion Capacitors. Mater. Today Sustain. 2022, 18, 100151. [Google Scholar] [CrossRef]
- Gu, Y.; Fan, L.-Q.; Huang, J.-L.; Geng, C.-L.; Lin, J.-M.; Huang, M.-L.; Huang, Y.-F.; Wu, J.-H. N-doped reduced graphene oxide decorated NiSe2 nanoparticles for high-performance asymmetric supercapacitors. J. Power Sources 2019, 425, 60–68. [Google Scholar] [CrossRef]
- Li, Y.; Sun, X.; Cheng, Z.; Xu, X.; Pan, J.; Yang, X.; Tian, F.; Li, Y.; Yang, J.; Qian, Y. Mesoporous Cu2−xSe nanocrystals as an ultrahigh-rate and long-lifespan anode material for sodium-ion batteries. Energy Storage Mater. 2019, 22, 275–283. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, D.; Mu, H.; Zhang, C.; Wu, L.; Feng, L.; Sun, X.; Zhang, G.; Wu, J.; Wen, G. Nanosized monometallic selenides heterostructures implanted into metal–organic frameworks-derived carbon for efficient lithium storage. J. Alloys Compd. 2021, 884, 161151. [Google Scholar] [CrossRef]
- Xiao, D.; Liu, S.; Zhao, K.; Ye, G.; Su, Y.; Zhu, W.; He, Z. Metal–organic framework’derived ultrasmall nitrogen-doped carbon-coated CoSe2/ZnSe nanospheres as enhanced anode materials for sodium-ion batteries. Ionics 2021, 27, 3327–3337. [Google Scholar] [CrossRef]
- Zhao, C.; Shen, Z.; Tu, F.; Hu, Z. Template directed hydrothermal synthesis of flowerlike NiSex/C composites as lithium/sodium ion battery anodes. J. Mater. Sci. 2020, 55, 3495–3506. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X. Reduced Graphene Oxides Decorated NiSe Nanoparticles as High Performance Electrodes for Na/Li Storage. Materials 2019, 12, 3709. [Google Scholar] [CrossRef]
- Cu, Q.; Shang, C.; Hu, L.; Zhou, G.; Wang, X. Freestanding carbon nanofibers encapsulating MOF-derived NiSe with in-situ porous carbon protective layer for sodium storage. Appl. Surf. Sci. 2022, 579, 152181. [Google Scholar] [CrossRef]
- Zhang, Z.; Shi, X.; Yang, X. Synthesis of core-shell NiSe/C nanospheres as anodes for lithium and sodium storage. Electrochim. Acta 2016, 208, 238–243. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, X.; Fang, L.; Peng, H.; Deng, X.; Sun, Z. Metal-Organic Framework-Derived NiSe Embedded into a Porous Multi-Heteroatom Self-Doped Carbon Matrix as a Promising Anode for Sodium-Ion Battery. Nanomaterials 2022, 12, 3345. https://doi.org/10.3390/nano12193345
Shi X, Fang L, Peng H, Deng X, Sun Z. Metal-Organic Framework-Derived NiSe Embedded into a Porous Multi-Heteroatom Self-Doped Carbon Matrix as a Promising Anode for Sodium-Ion Battery. Nanomaterials. 2022; 12(19):3345. https://doi.org/10.3390/nano12193345
Chicago/Turabian StyleShi, Xiaoyan, Lujun Fang, Handong Peng, Xizhan Deng, and Zhipeng Sun. 2022. "Metal-Organic Framework-Derived NiSe Embedded into a Porous Multi-Heteroatom Self-Doped Carbon Matrix as a Promising Anode for Sodium-Ion Battery" Nanomaterials 12, no. 19: 3345. https://doi.org/10.3390/nano12193345
APA StyleShi, X., Fang, L., Peng, H., Deng, X., & Sun, Z. (2022). Metal-Organic Framework-Derived NiSe Embedded into a Porous Multi-Heteroatom Self-Doped Carbon Matrix as a Promising Anode for Sodium-Ion Battery. Nanomaterials, 12(19), 3345. https://doi.org/10.3390/nano12193345