Development of Bio-Nanofluids Based on the Effect of Nanoparticles’ Chemical Nature and Novel Solanum torvum Extract for Chemical Enhanced Oil Recovery (CEOR) Processes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Obtention of Saponin-Rich Extracts (SRE)
2.2.2. Characterization of SRE
Foaming Capacity of SRE
Nature of Saponins
Physicochemical Properties of SRE
3. Results and Discussion
3.1. SRE Extract and Nanoparticle Properties
3.1.1. Effect of Nature and Concentration of the Nanoparticle
3.1.2. Capillary Number (Nc)
3.1.3. Core Flooding Test
4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Franco, C.A.; Giraldo, L.J.; Candela, C.H.; Bernal, K.M.; Villamil, F.; Montes, D.; Lopera, S.H.; Franco, C.A.; Cortés, F.B. Design and tuning of nanofluids applied to chemical enhanced oil recovery based on the surfactant–nanoparticle–brine interaction: From laboratory experiments to oil field application. Nanomaterials 2020, 10, 1579. [Google Scholar] [CrossRef] [PubMed]
- Franco, C.A.; Montoya, T.; Nassar, N.N.; Pereira-Almao, P.; Cortés, F.B. Adsorption and Subsequent Oxidation of Colombian Asphaltenes onto Nickel and/or Palladium Oxide Supported on Fumed Silica Nanoparticles. Energy Fuels 2013, 27, 7336–7347. [Google Scholar] [CrossRef]
- Levitt, D.; Jackson, A.; Heinson, C.; Britton, L.N.; Malik, T.; Dwarakanath, V.; Pope, G.A. Identification and Evaluation of High-Performance EOR Surfactants. In Proceedings of the SPE/DOE Symposium on Improved Oil Recovery, Tulsa, OK, USA, 22–26 April 2006. [Google Scholar]
- Massarweh, O.; Abushaikha, A.S. The use of surfactants in enhanced oil recovery: A review of recent advances. Energy Rep. 2020, 6, 3150–3178. [Google Scholar]
- Medina, O.E.; Olmos, C.; Lopera, S.H.; Cortés, F.B.; Franco, C.A. Nanotechnology Applied to Thermal Enhanced Oil Recovery Processes: A Review. Energies 2019, 12, 4671. [Google Scholar] [CrossRef]
- Franco, C.A.; Zabala, R.; Cortés, F.B. Nanotechnology applied to the enhancement of oil and gas productivity and recovery of Colombian fields. J. Pet. Sci. Eng. 2017, 157, 39–55. [Google Scholar]
- Franco, C.A.; Franco, C.A.; Zabala, R.D.; Bahamón, Í.; Forero, Á.; Cortés, F.B. Field Applications of Nanotechnology in the Oil and Gas Industry: Recent Advances and Perspectives. Energy Fuels 2021, 35, 19266–19287. [Google Scholar] [CrossRef]
- Sari, C.N.; Hertadi, R.; Gozan, M.; Roslan, A.M. Factors Affecting the Production of Biosurfactants and their Applications in Enhanced Oil Recovery (EOR). A Review. In Proceedings of the International Conference on Green Energy and Environment, Pangkal Pinang, Indonesia, 3–4 September 2019. [Google Scholar]
- Simjoo, M.; Rezaei, M.; Nadri, F.; Mousapour, M.; Iravani, M.; Chahardowli, M. Introducing a New, Low-Cost Biosurfactant for EOR Applications: A Mechanistic Study. In Proceedings of the IOR 2019—20th European Symposium on Improved Oil Recovery, Pau, France, 8–11 April 2019; European Association of Geoscientists & Engineers: Utrecht, The Netherlands, 2019; Volume 2019, pp. 1–11. [Google Scholar]
- Luque Alanis, P.A.; AlSofi, A.M.; Wang, J.; Han, M. Toward an Alternative Bio-Based SP Flooding Technology: I. Biosurfactant Evaluation. In Proceedings of the SPE Asia Pacific Enhanced Oil Recovery Conference, Kuala Lumpur, Malaysia, 11–13 August 2015. [Google Scholar]
- Guo, N.; Tong, T.; Ren, N.; Tu, Y.; Li, B. Saponins from seeds of Genus Camellia: Phytochemistry and bioactivity. Phytochemistry 2018, 149, 42–55. [Google Scholar] [CrossRef]
- Hadia, N.J.; Ottenheim, C.; Li, S.; Hua, N.Q.; Stubbs, L.P.; Lau, H.C. Experimental investigation of biosurfactant mixtures of surfactin produced by Bacillus Subtilis for EOR application. Fuel 2019, 251, 789–799. [Google Scholar] [CrossRef]
- Liu, Q.; Niu, J.; Yu, Y.; Wang, C.; Lu, S.; Zhang, S.; Lv, J.; Peng, B. Production, characterization and application of biosurfactant produced by Bacillus licheniformis L20 for microbial enhanced oil recovery. J. Clean. Prod. 2021, 307, 127193. [Google Scholar] [CrossRef]
- Elakkiya, V.T.; SureshKumar, P.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Govindarajan, M. Swift production of rhamnolipid biosurfactant, biopolymer and synthesis of biosurfactant-wrapped silver nanoparticles and its enhanced oil recovery. Saudi J. Biol. Sci. 2020, 27, 1892–1899. [Google Scholar] [CrossRef]
- Atta, D.Y.; Negash, B.M.; Yekeen, N.; Habte, A.D. A state-of-the-art review on the application of natural surfactants in enhanced oil recovery. J. Mol. Liq. 2021, 321, 114888. [Google Scholar] [CrossRef]
- Velioglu, Z.; Urek, R.O. Physicochemical and structural characterization of biosurfactant produced by Pleurotus djamor in solid-state fermentation. Biotechnol. Bioprocess Eng. 2016, 21, 430–438. [Google Scholar] [CrossRef]
- Zhao, F.; Shi, R.; Cui, Q.; Han, S.; Dong, H.; Zhang, Y. Biosurfactant production under diverse conditions by two kinds of biosurfactant-producing bacteria for microbial enhanced oil recovery. J. Pet. Sci. Eng. 2017, 157, 124–130. [Google Scholar] [CrossRef]
- Kumar, A.; Mandal, A. Synthesis and physiochemical characterization of zwitterionic surfactant for application in enhanced oil recovery. J. Mol. Liq. 2017, 243, 61–71. [Google Scholar] [CrossRef]
- Cohen, R.; Exerowa, D. Surface forces and properties of foam films from rhamnolipid biosurfactants. Adv. Colloid Interface Sci. 2007, 134–135, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Ghalambor, A.; Hayatdavoudi, A.; Shahidi-Asl, M. A Study of Formation Damage of Selective Mineralogy Due to Bacterial Plugging. SPE Adv. Technol. Ser. 1996, 4, 118–127. [Google Scholar] [CrossRef]
- Osode, P.I.; Rizk, T.Y.; Al-Obied, M.A.; Alutaibi, A.S.; Al-Khaldi, M.H. Microbial and Formation Damage Assessment of Secondary Treated Sewage Effluent for a Low Permeability Carbonate Reservoir Water Injection. In Proceedings of the SPE International Symposium on Oilfield Chemistry, The Woodlands, TX, USA, 13–15 April 2015; p. D031S009R003. [Google Scholar]
- Seright, R.S.; Liang, J. A Comparison of Different Types of Blocking Agents. In Proceedings of the SPE European Formation Damage Conference, The Hague, The Netherlands, 15–16 May 1995; p. SPE-30120-MS. [Google Scholar]
- Szumała, P. Structure of Microemulsion Formulated with Monoacylglycerols in the Presence of Polyols and Ethanol. J. Surfactants Deterg. 2015, 18, 97–106. [Google Scholar] [CrossRef]
- Asl, H.F.; Zargar, G.; Manshad, A.K.; Takassi, M.A.; Ali, J.A.; Keshavarz, A. Effect of SiO2 nanoparticles on the performance of L-Arg and L-Cys surfactants for enhanced oil recovery in carbonate porous media. J. Mol. Liq. 2020, 300, 112290. [Google Scholar] [CrossRef]
- Mehrabianfar, P.; Bahraminejad, H.; Manshad, A.K. An introductory investigation of a polymeric surfactant from a new natural source in chemical enhanced oil recovery (CEOR). J. Pet. Sci. Eng. 2021, 198, 108172. [Google Scholar] [CrossRef]
- Holmberg, K. Natural surfactants. Curr. Opin. Colloid Interface Sci. 2001, 6, 148–159. [Google Scholar] [CrossRef]
- Foley, P.; Kermanshahi pour, A.; Beach, E.S.; Zimmerman, J.B. Derivation and synthesis of renewable surfactants. Chem. Soc. Rev. 2012, 41, 1499–1518. [Google Scholar] [CrossRef] [PubMed]
- Malkapuram, S.T.; Sharma, V.; Gumfekar, S.P.; Sonawane, S.; Sonawane, S.; Boczkaj, G.; Seepana, M.M. A review on recent advances in the application of biosurfactants in wastewater treatment. Sustain. Energy Technol. Assess. 2021, 48, 101576. [Google Scholar] [CrossRef]
- Bragoni, V.; Rit, R.K.; Kirchmann, R.; Trita, A.S.; Gooßen, L.J. Synthesis of bio-based surfactants from cashew nutshell liquid in water. Green Chem. 2018, 20, 3210–3213. [Google Scholar] [CrossRef]
- Zhang, Y.; You, Q.; Fu, Y.; Zhao, M.; Fan, H.; Liu, Y.; Dai, C. Investigation on interfacial/surface properties of bio-based surfactant N-aliphatic amide-N,N-diethoxypropylsulfonate sodium as an oil displacement agent regenerated from waste cooking oil. J. Mol. Liq. 2016, 223, 68–74. [Google Scholar] [CrossRef]
- Deotale, S.M.; Dutta, S.; Moses, J.A.; Anandharamakrishnan, C. Coffee oil as a natural surfactant. Food Chem. 2019, 295, 180–188. [Google Scholar] [CrossRef]
- Balachandran, V.S.; Jadhav, S.R.; Vemula, P.K.; John, G. Recent advances in cardanol chemistry in a nutshell: From a nut to nanomaterials. Chem. Soc. Rev. 2013, 42, 427–438. [Google Scholar] [CrossRef]
- Saxena, N.; Mandal, A. Applications of Natural Surfactants in EOR BT. In Natural Surfactants: Application in Enhanced Oil Recovery; Saxena, N., Mandal, A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 31–40. ISBN 978-3-030-78548-2. [Google Scholar]
- Somoza, A.; Tafur, N.; Arce, A.; Soto, A. Design and performance analysis of a formulation based on SDBS and ionic liquid for EOR in carbonate reservoirs. J. Pet. Sci. Eng. 2022, 209, 109856. [Google Scholar] [CrossRef]
- Nafisifar, A.; Khaksar Manshad, A.; Reza Shadizadeh, S. Evaluation of a new green synthesized surfactant from linseeds—Chemical EOR implications from sandstone petroleum reservoirs. J. Mol. Liq. 2021, 342, 117263. [Google Scholar] [CrossRef]
- Chen, F.-F.; Zhou, J.; Zhang, Y.-W.; Chen, Y.-P.; Wang, Y.-R.; Zhao, Y.-F.; Liu, W.; Huang, X.-F. Five new steroidal saponins from the seeds of Solanum melongena L. Phytochem. Lett. 2021, 41, 21–26. [Google Scholar] [CrossRef]
- Viet Cuong, L.C.; Nhi, N.P.K.; Ha, T.P.; Anh, L.T.; Dat, T.T.H.; Oanh, P.T.T.; Phuong, N.T.M.; Thu, V.T.K.; Duc, H.V.; Anh, H.L.T. A new steroidal saponin from the aerial parts of Solanum torvum. Nat. Prod. Res. 2021, 35, 1–6. [Google Scholar] [CrossRef]
- Xu, Z.-P.; Liu, Y.; Li, X.-M.; Wang, S.-Y.; Jiang, P.; Pan, J.; Jiang, Y.-K.; Kuang, H.-X.; Yang, B.-Y. Xanthosaponins A and B, two unusual steroidal saponins with an unprecedented 16,17-seco-cholestane skeleton from Solanum xanthocarpum and their cytotoxic activities. New J. Chem. 2022, 46, 1815–1820. [Google Scholar] [CrossRef]
- Xu, Z.-P.; Liu, Y.; Wang, S.-Y.; Li, X.-M.; Lu, D.-X.; Li, Z.-W.; Pan, J.; Kuang, H.-X.; Yang, B.-Y. Cholesaponins A-F, six new rare cholestane saponins including two unprecedented 14-methyl C28 cholestane saponins from Solanum xanthocarpum. Tetrahedron 2022, 109, 132674. [Google Scholar] [CrossRef]
- Agrawal, A.D.; Bajpei, P.S.; Patil, A.A.; Bavaskar, S.R. Scholars Research Library_Solanum. Pharm. Lett. 2010, 2, 403–407. [Google Scholar]
- Franco-Aguirre, M.; Zabala, R.D.; Lopera, S.H.; Franco, C.A.; Cortés, F.B. Interaction of anionic surfactant-nanoparticles for gas—Wettability alteration of sandstone in tight gas-condensate reservoirs. J. Nat. Gas Sci. Eng. 2018, 51, 53–64. [Google Scholar] [CrossRef]
- Razavirad, F.; Shahrabadi, A.; Dehkordi, P.B.; Rashidi, A. Experimental Pore-Scale Study of a Novel Functionalized Iron-Carbon Nanohybrid for Enhanced Oil Recovery (EOR). Nanomaterials 2022, 12, 103. [Google Scholar] [CrossRef] [PubMed]
- Nourafkan, E.; Hu, Z.; Wen, D. Nanoparticle-enabled delivery of surfactants in porous media. J. Colloid Interface Sci. 2018, 519, 44–57. [Google Scholar] [CrossRef]
- Zhang, H.; Nikolov, A.; Wasan, D. Enhanced oil recovery (EOR) using nanoparticle dispersions: Underlying mechanism and imbibition experiments. Energy Fuels 2014, 28, 3002–3009. [Google Scholar] [CrossRef]
- Rezvani, H.; Panahpoori, D.; Riazi, M.; Parsaei, R.; Tabaei, M.; Cortés, F.B. A novel foam formulation by Al2O3/SiO2 nanoparticles for EOR applications: A mechanistic study. J. Mol. Liq. 2020, 304, 112730. [Google Scholar] [CrossRef]
- Cortés, F.B.; Lozano, M.; Santamaria, O.; Betancur Marquez, S.; Zapata, K.; Ospina, N.; Franco, C.A. Development and Evaluation of Surfactant Nanocapsules for Chemical Enhanced Oil Recovery (EOR) Applications. Molecules 2018, 23, 1523. [Google Scholar] [CrossRef]
- Pérez-Robles, S.; Cortés, F.B.; Franco, C.A. Effect of the nanoparticles in the stability of hydrolyzed polyacrylamide/resorcinol/formaldehyde gel systems for water shut-off/conformance control applications. J. Appl. Polym. Sci. 2019, 136, 47568. [Google Scholar] [CrossRef]
- Keiteb, A.S.; Saion, E.; Zakaria, A.; Soltani, N. Structural and Optical Properties of Zirconia Nanoparticles by Thermal Treatment Synthesis. J. Nanomater. 2016, 2016, 1913609. [Google Scholar] [CrossRef]
- Betancur, S.; Carmona, J.C.; Nassar, N.N.; Franco, C.A.; Cortés, F.B. Role of Particle Size and Surface Acidity of Silica Gel Nanoparticles in Inhibition of Formation Damage by Asphaltene in Oil Reservoirs. Ind. Eng. Chem. Res. 2016, 55, 6122–6132. [Google Scholar] [CrossRef]
- Villegas, J.P.; Moncayo-Riascos, I.; Galeano-Caro, D.; Riazi, M.; Franco, C.A.; Cortés, F.B. Functionalization of γ-Alumina and Magnesia Nanoparticles with a Fluorocarbon Surfactant to Promote Ultra-Gas-Wet Surfaces: Experimental and Theoretical Approach. ACS Appl. Mater. Interfaces 2020, 12, 13510–13520. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, Q.; Yang, J.; Zhang, L.; Davarpanah, A. A laboratory approach on the hybrid-enhanced oil recovery techniques with different saline brines in sandstone reservoirs. Processes 2020, 8, 1051. [Google Scholar] [CrossRef]
- Wójciak-Kosior, M.; Sowa, I.; Kocjan, R.; Nowak, R. Effect of different extraction techniques on quantification of oleanolic and ursolic acid in Lamii albi flos. Ind. Crops Prod. 2013, 44, 373–377. [Google Scholar] [CrossRef]
- Wu, J.; Lin, L.; Chau, F. Ultrasound-assisted extraction of ginseng saponins from ginseng roots and cultured ginseng cells. Ultrason. Sonochem. 2001, 8, 347–352. [Google Scholar] [CrossRef]
- Phillips, L.G.; Haque, Z.; Kinsella, J.E. A Method for the Measurement of Foam Formation and Stability. J. Food Sci. 1987, 52, 1074–1077. [Google Scholar] [CrossRef]
- Samal, K.; Das, C.; Mohanty, K. Eco-friendly biosurfactant saponin for the solubilization of cationic and anionic dyes in aqueous system. Dye. Pigment. 2017, 140, 100–108. [Google Scholar] [CrossRef]
- Pang, L.S.K.; Saxby, J.D.; Chatfield, S.P. Thermogravimetric analysis of carbon nanotubes and nanoparticles. J. Phys. Chem. 1993, 97, 6941–6942. [Google Scholar] [CrossRef]
- Sharma, M.K.; Shah, D.O. Chapter 10 Use of Surfactants in Oil Recovery. Enhanc. Oil Recovery 1989, 17, 255–315. [Google Scholar]
- Chun, A.H.C.; Martin, A.N. Measurement of Hydrophile-Lipophile Balance of Surface-Active Agents. J. Pharm. Sci. 1961, 50, 732–736. [Google Scholar] [CrossRef] [PubMed]
- Péres, V.F.; Saffi, J.; Melecchi, M.I.S.; Abad, F.C.; de Assis Jacques, R.; Martinez, M.M.; Oliveira, E.C.; Caramão, E.B. Comparison of soxhlet, ultrasound-assisted and pressurized liquid extraction of terpenes, fatty acids and Vitamin E from Piper gaudichaudianum Kunth. J. Chromatogr. A 2006, 1105, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Sheng, J.J. Status of surfactant EOR technology. Petroleum 2015, 1, 97–105. [Google Scholar] [CrossRef]
- Rai, S.; Acharya-Siwakoti, E.; Kafle, A.; Devkota, H.P.; Bhattarai, A. Plant-Derived Saponins: A Review of Their Surfactant Properties and Applications. Sci 2021, 3, 44. [Google Scholar] [CrossRef]
- El Aziz, M.M.A.; Ashour, A.S.; Melad, A.S.G. A review on saponins from medicinal plants: Chemistry, isolation, and determination. J. Nanomed. Res. 2019, 8, 282–288. [Google Scholar]
- Van Atta, G.R.; Guggolz, J. Forage Constituents, Detection of Saponins and Sapogenins on Paper Chromatograms by Liebermann-Burchard Reagent. J. Agric. Food Chem. 1958, 6, 849–850. [Google Scholar] [CrossRef]
- Sarmah, S.; Borgohain, S.; Fan, G.; Baruah, A.A. Characterization and identification of the most appropriate nonionic surfactant for enhanced oil recovery. J. Pet. Explor. Prod. Technol. 2020, 10, 115–123. [Google Scholar] [CrossRef]
- Sahu, N.P.; Banerjee, S.; Mondal, N.B.; Mandal, D. Steroidal saponins. In Fortschritte der Chemie Organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products; Springer: Berlin, Germany, 2008; pp. 45–141. [Google Scholar]
- Lin, I.J.; Marszall, L. CMC, HLB, and effective chain length of surface-active anionic and cationic substances containing oxyethylene groups. J. Colloid Interface Sci. 1976, 57, 85–93. [Google Scholar] [CrossRef]
- Wan, L.S.C.; Lee, P.F.S. CMC of Polysorbates. J. Pharm. Sci. 1974, 63, 136–137. [Google Scholar] [CrossRef]
- Danov, K.D.; Kralchevsky, P.A.; Ananthapadmanabhan, K.P. Micelle–monomer equilibria in solutions of ionic surfactants and in ionic–nonionic mixtures: A generalized phase separation model. Adv. Colloid Interface Sci. 2014, 206, 17–45. [Google Scholar] [CrossRef]
- Kunieda, H.; Shinoda, K. Evaluation of the hydrophile-lipophile balance (HLB) of nonionic surfactants. I. Multisurfactant systems. J. Colloid Interface Sci. 1985, 107, 107–121. [Google Scholar] [CrossRef]
- Manrique, E.; Thomas, C.; Ravikiran, R.; Izadi, M.; Lantz, M.; Romero, J.; Alvarado, V. EOR: Current Status and Opportunities. In Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 24–28 April 2010. [Google Scholar]
- Kosmulski, M.; Mączka, E. Surface charging and points of zero charge of less common oxides: Beryllium oxide. Colloids Surf. A Physicochem. Eng. Asp. 2019, 575, 140–143. [Google Scholar] [CrossRef]
- Wojtanowicz, A.K.; Krilov, Z.; Langlinais, J.P. Study on the Effect of Pore Blocking Mechanisms on Formation Damage. In Proceedings of the SPE Production Operations Symposium, Oklahoma City, OK, USA, 8–10 March 1987; p. SPE-16233-MS. [Google Scholar]
- Barrera, G.D.; Taylor, M.B.; Allan, N.L.; Barron, T.H.K.; Kantorovich, L.N.; Mackrodt, W.C. Ionic solids at elevated temperatures and high pressures: MgF2. J. Chem. Phys. 1997, 107, 4337–4344. [Google Scholar] [CrossRef]
- Giordano, L.; Ferrari, A.M. Modified ion pair interaction for water dimers on supported MgO ultrathin films. J. Phys. Chem. C 2012, 116, 20349–20355. [Google Scholar] [CrossRef]
- Alvim, R.S.; Borges, I., Jr.; Costa, D.G.; Leitao, A.A. Density-functional theory simulation of the dissociative chemisorption of water molecules on the MgO (001) surface. J. Phys. Chem. C 2012, 116, 738–744. [Google Scholar] [CrossRef]
- De Leeuw, N.H.; Parker, S.C. Molecular-dynamics simulation of MgO surfaces in liquid water using a shell-model potential for water. Phys. Rev. B 1998, 58, 13901. [Google Scholar] [CrossRef]
- Scamehorn, C.A.; Hess, A.C.; McCarthy, M.I. Correlation corrected periodic Hartree–Fock study of the interactions between water and the magnesium oxide surface. J. Chem. Phys. 1993, 99, 2786–2795. [Google Scholar] [CrossRef]
- Kamal, M.S.; Hussein, I.A.; Sultan, A.S. Review on Surfactant Flooding: Phase Behavior, Retention, IFT, and Field Applications. Energy Fuels 2017, 31, 7701–7720. [Google Scholar] [CrossRef]
- Hunger, M.; Weitkamp, J. In situ IR, NMR, EPR, and UV/Vis Spectroscopy: Tools for New Insight into the Mechanisms of Heterogeneous Catalysis. Angew. Chem. Int. Ed. 2001, 40, 2954–2971. [Google Scholar] [CrossRef]
- Tanhaei, B.; Saghatoleslami, N.; Chenar, M.P.; Ayati, A.; Hesampour, M.; Mänttäri, M. Experimental study of CMC evaluation in single and mixed surfactant systems, using the UV–Vis spectroscopic method. J. Surfactants Deterg. 2013, 16, 357–362. [Google Scholar] [CrossRef]
- Azum, N.; Rub, M.A.; Asiri, A.M.; Bawazeer, W.A. Micellar and interfacial properties of amphiphilic drug–non-ionic surfactants mixed systems: Surface tension, fluorescence and UV–vis studies. Colloids Surf. A Physicochem. Eng. Asp. 2017, 522, 183–192. [Google Scholar] [CrossRef]
- Falcone, R.D.; Correa, N.M.; Silber, J.J. On the formation of new reverse micelles: A comparative study of benzene/surfactants/ionic liquids systems using UV− visible absorption spectroscopy and dynamic light scattering. Langmuir 2009, 25, 10426–10429. [Google Scholar] [CrossRef] [PubMed]
- Qi, M.; Zhou, Y. Multimicelle aggregate mechanism for spherical multimolecular micelles: From theories, characteristics and properties to applications. Mater. Chem. Front. 2019, 3, 1994–2009. [Google Scholar] [CrossRef]
- Eicke, H.; Christen, H. Is water critical to the formation of micelles in apolar media? Helv. Chim. Acta 1978, 61, 2258–2263. [Google Scholar] [CrossRef]
- Wennerström, H.; Lindman, B. Micelles. Physical chemistry of surfactant association. Phys. Rep. 1979, 52, 1–86. [Google Scholar] [CrossRef]
- Taborda, E.A.; Franco, C.A.; Ruiz, M.A.; Alvarado, V.; Cortes, F.B. Experimental and theoretical study of viscosity reduction in heavy crude oils by addition of nanoparticles. Energy Fuels 2017, 31, 1329–1338. [Google Scholar] [CrossRef]
- Guzmán, J.D.; Betancur, S.; Carrasco-Marín, F.; Franco, C.A.; Nassar, N.N.; Cortés, F.B. Importance of the Adsorption Method Used for Obtaining the Nanoparticle Dosage for Asphaltene-Related Treatments. Energy Fuels 2016, 30, 2052–2059. [Google Scholar] [CrossRef]
- Mauricio, P.; Gloria, C.; Milena, Q.; Javier, U.; Alberto, G.; Jaime, P. New Art of Building Horizontal and Highly Deviated Wells Help Maximize Recovery and Production from Heavy Oil Fields in Colombia. In Proceedings of the SPE Heavy Oil Conference, Calgary, AB, Canada, 10–12 June 2014; p. D031S018R005. [Google Scholar]
- Almahfood, M.; Bai, B. The synergistic effects of nanoparticle-surfactant nanofluids in EOR applications. J. Pet. Sci. Eng. 2018, 171, 196–210. [Google Scholar] [CrossRef]
- Ruidiaz, E.M.; Winter, A.; Trevisan, O. V Oil recovery and wettability alteration in carbonates due to carbonate water injection. J. Pet. Explor. Prod. Technol. 2018, 8, 249–258. [Google Scholar] [CrossRef]
- Dordzie, G.; Dejam, M. Enhanced oil recovery from fractured carbonate reservoirs using nanoparticles with low salinity water and surfactant: A review on experimental and simulation studies. Adv. Colloid Interface Sci. 2021, 293, 102449. [Google Scholar] [CrossRef]
- Sun, W.; Wang, Y.; Zhang, W.; Ying, H.; Wang, P. Novel surfactant peptide for removal of biofilms. Colloids Surf. B Biointerfaces 2018, 172, 180–186. [Google Scholar] [CrossRef] [PubMed]
- AlSofi, A.M.; Blunt, M.J. Polymer flooding design and optimization under economic uncertainty. J. Pet. Sci. Eng. 2014, 124, 46–59. [Google Scholar] [CrossRef]
- Taheri Shakib, J.; Akhgarian, E.; Ghaderi, A. The effect of hydraulic fracture characteristics on production rate in thermal EOR methods. Fuel 2015, 141, 226–235. [Google Scholar] [CrossRef]
Result | Observation | ||
---|---|---|---|
Foam formation | + | Stable for 1 h | |
Liebermann–Burchard | + | Yellow coloration |
Point Zero of Charge (PZC) | Size Particle (dp90) nm | Mass Loss at 200 °C (%) | |
---|---|---|---|
Fumed silica (SiO2) | 2.0 ± 0.1 | 68.0 ± 1.5 | 1 |
Zirconium oxide (ZrO2) | 3.5 ± 0.1 | 66.0 ± 2.0 | 2 |
Aluminum oxide (Al2O3) | 6.3 ± 0.1 | 61.4 ± 2.0 | 2 |
Magnesium oxide (MgO) | 11.4 ± 0.1 | 69.4 ± 0.2 | 2 |
Optimal Bio-Nanofluid | SRE Solution | Water | |
---|---|---|---|
Contact Angle | |||
Viscosity | 5.00 ± 0.01 | 4.37 ± 0.01 | 1.00 ± 0.01 |
IFT (mN m−1) | 3.66 ± 0.12 | 8.60 ± 0.22 | 17.25 ± 0.20 |
Nc | 1.80 × 10−3 | 4.00 × 10−4 | 1.00 × 10−4 |
Property | Type of Treatment | ||
---|---|---|---|
Before | SRE-SE Solution | Bio-Nanofluid | |
Ko at Sw (mD) | 14.3 | 15.5 | 16.8 |
Kw at So (mD) | 3.2 | 2.7 | 2.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zapata, K.; Rodríguez, Y.; Lopera, S.H.; Cortes, F.B.; Franco, C.A. Development of Bio-Nanofluids Based on the Effect of Nanoparticles’ Chemical Nature and Novel Solanum torvum Extract for Chemical Enhanced Oil Recovery (CEOR) Processes. Nanomaterials 2022, 12, 3214. https://doi.org/10.3390/nano12183214
Zapata K, Rodríguez Y, Lopera SH, Cortes FB, Franco CA. Development of Bio-Nanofluids Based on the Effect of Nanoparticles’ Chemical Nature and Novel Solanum torvum Extract for Chemical Enhanced Oil Recovery (CEOR) Processes. Nanomaterials. 2022; 12(18):3214. https://doi.org/10.3390/nano12183214
Chicago/Turabian StyleZapata, Karol, Yuber Rodríguez, Sergio H. Lopera, Farid B. Cortes, and Camilo A. Franco. 2022. "Development of Bio-Nanofluids Based on the Effect of Nanoparticles’ Chemical Nature and Novel Solanum torvum Extract for Chemical Enhanced Oil Recovery (CEOR) Processes" Nanomaterials 12, no. 18: 3214. https://doi.org/10.3390/nano12183214
APA StyleZapata, K., Rodríguez, Y., Lopera, S. H., Cortes, F. B., & Franco, C. A. (2022). Development of Bio-Nanofluids Based on the Effect of Nanoparticles’ Chemical Nature and Novel Solanum torvum Extract for Chemical Enhanced Oil Recovery (CEOR) Processes. Nanomaterials, 12(18), 3214. https://doi.org/10.3390/nano12183214