Synthesis of Mesoporous Silica Adsorbent Modified with Mercapto–Amine Groups for Selective Adsorption of Cu2+ Ion from Aqueous Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of MSH@SH NPs
2.3. Characterization
2.4. Adsorption Study
2.4.1. Effect of pH
2.4.2. Effect of Time
2.4.3. Effect of Competitive Metal Ions
2.4.4. Recyclability Test
3. Results and Discussion
3.1. FTIR Analysis
3.2. XRD and BET Analysis of MSH@MA NPs
3.3. TGA, Zeta, and Particle Size Analysis of MSH@MA NPs
3.4. Morphological Analysis (SEM and TEM) of MSH@MA NPs
3.5. Adsorption Kinetics
3.5.1. Effect of pH and Time on Adsorption Efficacy of MSH@MA NPs
3.5.2. Effect of Adsorbent Dosage and Selective Efficiency of MSH@MA NPs
3.5.3. Adsorption Kinetics in Aqueous Solution and Recyclability of MSH@MA NPs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ali, I. New generation adsorbents for water treatment. Chem. Rev. 2012, 112, 5073–5091. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Li, Z.Y.; Lu, X.N.; Duan, Q.N.; Huang, L.; Bi, J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 2018, 642, 690–700. [Google Scholar] [CrossRef] [PubMed]
- Chu, Z.J.; Fan, X.H.; Wang, W.N.; Huang, W.C. Quantitative evaluation of heavy metals’ pollution hazards and estimation of heavy metals’ environmental costs in leachate during food waste composting. Waste Manag. 2019, 84, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Schwarzenbach, R.P.; Escher, B.I.; Fenner, K.; Hofstetter, T.B.; Johnson, C.A.; Gunten, U.V.; Wehrli, B. The challenge of micropollutants in aquatic systems. Science 2006, 313, 1072–1077. [Google Scholar] [CrossRef] [PubMed]
- Moorthy, M.S.; Cho, H.-J.; Yu, E.-J.; Jung, Y.-S.; Ha, C.-S. A modified mesoporous silica optical nanosensor for selective monitoring of multiple analytes in water. Chem. Commun. 2013, 49, 8758–8760. [Google Scholar] [CrossRef] [PubMed]
- Nagappan, S.; Choi, M.-C.; Sung, G.; Park, S.S.; Moorthy, M.S.; Chu, S.-W.; Lee, W.-K.; Ha, C.-S. Highly transparent, hydrophobic fluorinated polymethylsiloxane/silica organic-inorganic hybrids for anti-stain coating. Macromol. Res. 2013, 21, 669–680. [Google Scholar] [CrossRef]
- Lubick, N.; Malakoff, D. With pact’s completion, the real work begins. Science 2013, 341, 1443–1445. [Google Scholar] [CrossRef] [PubMed]
- Bose-O’Reilly, S.; McCarthy, K.M.; Steckling, N.; Lettmeier, B. Mercury exposure and children’s health. Curr. Probl. Pediatr. Adolesc. Health Care 2010, 40, 186–215. [Google Scholar] [CrossRef] [PubMed]
- Bessbousse, H.; Rhlalou, T.; Verchère, J.F.; Lebrun, L. Novel Metal-Complexing Membrane Containing Poly(4-vinylpyridine) for Removal of Hg(II) from Aqueous Solution. J. Phys. Chem. B 2009, 113, 8588–8598. [Google Scholar] [CrossRef] [PubMed]
- Moorthy, M.S.; Seo, D.-J.; Song, H.-J.; Park, S.S.; Ha, C.-S. Magnetic mesoporous silica hybrid nanoparticles for highly selective boron adsorption. J. Mater. Chem. A 2013, 1, 12485–12496. [Google Scholar] [CrossRef]
- Veglio, F.; Beolchini, F. Removal of metals by biosorption: A review. Hydrometallurgy 1997, 44, 301–316. [Google Scholar] [CrossRef]
- Moorthy, M.S.; Kim, M.-J.; Bae, J.-H.; Park, S.S.; Saravanan, N.; Kim, S.-H.; Ha, C.-S. Multifunctional Periodic Mesoporous Organosilicas for Biomolecule Recognition, Biomedical Applications in Cancer Therapy, and Metal Adsorption. Eur. J. Inorg. Chem. 2013, 2013, 3028–3038. [Google Scholar] [CrossRef]
- Miretzky, P.; Cirelli, A.F. Hg(II) removal from water by chitosan and chitosan derivatives: A review. J. Hazard. Mater. 2009, 167, 10–23. [Google Scholar] [CrossRef] [PubMed]
- Davidescu, C.-M.; Ardelean, R.; Popa, A. New polymeric adsorbent materials used for removal of phenolic derivatives from wastewaters. Pure Appl. Chem. 2019, 91, 443–458. [Google Scholar] [CrossRef]
- Moorthy, M.S.; Tapaswi, P.K.; Park, S.S.; Mathew, A.; Cho, H.-J.; Ha, C.-S. Ion-imprinted mesoporous silica hybrids for selective recognition of target metal ions. Micropor. Mesopor. Mater. 2013, 180, 162–171. [Google Scholar] [CrossRef]
- Tapaswi, P.K.; Moorthy, M.S.; Park, S.S.; Ha, C.-S. Fast, selective adsorption of Cu2+ from aqueous mixed metal ions solution using 1,4,7-triazacyclononane modified SBA-15 silica adsorbent (SBA-TACN). J. Solid State Chem. 2014, 211, 191–199. [Google Scholar] [CrossRef]
- Lu, X.; Wang, F.; Li, X.-Y.; Shih, K.; Zeng, E.Y. Adsorption and Thermal Stabilization of Pb2+ and Cu2+ by Zeolite. Ind. Eng. Chem. Res. 2016, 55, 8767–8773. [Google Scholar] [CrossRef]
- Park, S.S.; Moorthy, M.S.; Ha, C.-S. Periodic mesoporous organosilicas for advanced applications. NPG Asia Mater. 2014, 6, e96. [Google Scholar] [CrossRef]
- Parida, D.; Salmeia, K.A.; Sadeghpour, A.; Zhao, S.; Maurya, A.K.; Assaf, K.I.; Moreau, E.; Pauer, R.; Lehner, S.; Jovic, M.; et al. Template-free synthesis of hybrid silica nanoparticle with functionalized mesostructure for efficient methylene blue removal. Mater. Des. 2021, 201, 109494. [Google Scholar] [CrossRef]
- Putz, A.; Ciopec, M.; Negrea, A.; Grad, O.; Ianăși, C.; Ivankov, O.I.; Milanović, M.; Stijepović, I.; Almásy, L. Comparison of structure and adsorption properties of mesoporous silica functionalized with aminopropyl groups by the co-condensation and the post grafting methods. Materials 2021, 14, 628. [Google Scholar] [CrossRef]
- Soltani, R.; Marjani, A.; Hosseini, M.; Shirazian, S. Mesostructured hollow siliceous spheres for adsorption of dyes. Chem. Eng. Technol. 2020, 43, 392–402. [Google Scholar] [CrossRef]
- Moorthy, M.S.; Kim, H.-B.; Sung, A.-R.; Bae, J.-H.; Kim, S.-H.; Ha, C.-S. Fluorescent mesoporous organosilicas for selective monitoring of Hg2+ and Fe3+ ions in water and living cells. Micropor. Mesopor. Mater. 2014, 194, 219–228. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Chen, C.-H.; Cheng, S.; Li, H.-Y. Adsorption of Pb(II) and Cu(II) metal ions on functionalized large-pore mesoporous silica. Int. J. Environ. Sci. Tecnol. 2016, 1, 65–76. [Google Scholar] [CrossRef]
- Park, S.S.; Moorthy, M.S.; Ha, C. Periodic mesoporous organosilica (PMO) for catalytic applications. Korean J. Chem. Eng. 2014, 31, 1707–1719. [Google Scholar] [CrossRef]
- Cashin, V.B.; Eldridge, D.S.; Yu, A.; Zhao, D. Surface functionalization and manipulation of mesoporous silica adsorbents for improved removal of pollutants: A review. Environ. Sci. Water Res. Technol. 2018, 4, 110–128. [Google Scholar] [CrossRef]
- Moorthy, M.S.; Kim, H.-B.; Bae, J.-H.; Kim, S.-H.; Ha, C.-S. Design of core–shell magnetic mesoporous silica hybrids for pH and UV light stimuli-responsive cargo release. RSC Adv. 2016, 6, 29106–29115. [Google Scholar] [CrossRef]
- Da’na, E. Adsorption of heavy metals on functionalized-mesoporous silica: A review. Micropor. Mesopor. Mater. 2017, 247, 145–157. [Google Scholar] [CrossRef]
- Santhamoorthy, M.; Thirupathi, K.; Thirumalai, D.; Aldawood, S.; Kim, S.-C. Surface grafted silica adsorbent for efficient removal of Hg2+ ions from contaminated water. Environ. Res. 2022, 212, 113211. [Google Scholar] [CrossRef]
- Ai, K.; Ruan, C.; Shen, M.; Lu, L. MoS2 nanosheets with widened interlayer spacing for high-efficiency removal of mercury in aquatic systems. Adv. Funct. Mater. 2016, 26, 5542–5549. [Google Scholar] [CrossRef]
- Santhamoorthy, M.; Thirumalai, D.; Thirupathi, K.; Kim, S.-C. Synthesis of dithiol-modified mesoporous silica adsorbent for selective adsorption of mercury ions from wastewater. Appl. Nanosci. 2022. [Google Scholar] [CrossRef]
- Perdoor, S.S.; Noureddine, A.; Dubois, F.; Man, M.C.; Cattoën, X. Click functionalization of sol-gel materials. In Handbook of Sol-Gel Science and Technology; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Yoshitake, H.; Yokoi, T.; Tatsumi, T. Adsorption behavior of arsenate at transition metal cations captured by amino-functionalized mesoporous silicas. Chem. Mater. 2003, 15, 1713–1721. [Google Scholar] [CrossRef]
- Heidari, A.; Younesi, H.; Mehraban, Z. Removal of Ni(II), Cd(II), and Pb(II) from a ternary aqueous solution by amino functionalized mesoporous and nano mesoporous silica. Chem. Eng. J. 2009, 153, 70–79. [Google Scholar] [CrossRef]
- Melnyk, I.V.; Tomina, V.V.; Stolyarchuk, N.V.; Katelnikovas, A.; Kareiva, A. Affordable phosphonic- and phenyl-functionalized silicate adsorbent for metal and dye cations uptake. J. Porous Mater. 2022. [Google Scholar] [CrossRef]
- Moorthy, M.S.; Hoang, G.; Subramanian, B.; Bui, N.Q.; Panchanathan, M.; Mondal, S.; Tuong, V.P.T.; Kim, H.; Oh, J. Prussian blue decorated mesoporous silica hybrid nanocarriers for photoacoustic imaging-guided synergistic chemo-photothermal combination therapy. J. Mater. Chem. B 2018, 6, 5220–5233. [Google Scholar] [CrossRef]
- Branda, F.; Bifulco, A.; Jehnichen, D.; Parida, D.; Pauer, R.; Passaro, J.; Gaan, S.; Pospiech, D.; Durante, M. Structure and bottom-up formation mechanism of multisheet silica-based nanoparticles formed in an epoxy matrix through an in situ process. Langmuir 2021, 37, 8886–8893. [Google Scholar] [CrossRef] [PubMed]
- Hatton, B.; Landskron, K.; Whithall, W.; Perovic, D.; Ozin, G.A. Past, present, and future of periodic mesoporous organosilicas—The PMOs. Acc. Chem. Res. 2005, 4, 305–312. [Google Scholar] [CrossRef]
- Mather, B.D.; Viswanathan, K.; Miller, K.M.; Long, T.E. Michael addition reactions in macromolecular design for emerging technologies. Prog. Polym. Sci. 2006, 31, 487–531. [Google Scholar] [CrossRef]
- Moorthy, M.S.; Bharathiraja, S.; Manivasagan, P.; Lee, K.D.; Oh, J. Crown ether triad modified core-shell magnetic mesoporous silica nanocarrier for pH-responsive drug delivery and magnetic hyperthermia applications. New J. Chem. 2017, 41, 10935–10947. [Google Scholar] [CrossRef]
- Bordoni, A.V.; Lombardo, M.V.; Wolosiuk, A. Photochemical radical thiolene click-based methodologies for silica and transition metal oxides materials chemical modification: A mini-review. RSC Adv. 2016, 6, 77410–77426. [Google Scholar] [CrossRef]
- Liu, J.; Yang, J.; Yang, Q.H.; Wang, G.; Li, Y. Hydrothermally stable thioether-bridged mesoporous materials with void defects in the pore walls. Adv. Funct. Mater. 2005, 15, 1297–1302. [Google Scholar] [CrossRef]
- Manivasagan, P.; Bharathiraja, S.; Moorthy, M.S.; Oh, Y.; Seo, H.; Oh, J. Marine biopolymer-based nanomaterials as a novel platform for theranostic applications. Polym. Rev. 2017, 57, 631–667. [Google Scholar] [CrossRef]
- Saman, N.; Johari, K.; Mat, H. Adsorption characteristics of sulfur-functionalized silica microspheres with respect to the removal of Hg(II) from aqueous solutions. Ind. Eng. Chem. Res. 2014, 53, 1225–1233. [Google Scholar] [CrossRef]
- Wei, J.; Chen, S.; Li, Y.; He, Z.; Geng, L.; Liao, L. Aqueous Cu(II) ion adsorption by amino functionalized mesoporous silica KIT-6. RSC Adv. 2020, 10, 20504–20514. [Google Scholar] [CrossRef] [PubMed]
- Lachowicz, J.I.; Delpiano, G.R.; Zanda, D.; Piludu, M.; Sanjust, E.; Monduzzi, M.; Salis, A. Adsorption of Cu2+ and Zn2+ on SBA-15 mesoporous silica functionalized with triethylenetetramine chelating agent. J. Environ. Chem. Eng. 2019, 7, 103205. [Google Scholar] [CrossRef]
- Ryu, S.C.; Naidu, G.; Moon, H.; Vigneswaran, S. Continuous and selective copper recovery by multi-modified and granulated SBA-15. Chemosphere 2021, 271, 129820. [Google Scholar] [CrossRef]
- Gao, J.; Lei, H.; Han, Z.; Shi, Q.; Chen, Y.; Jiang, Y. Dopamine functionalized tannic-acid-templated mesoporous silica nanoparticles as a new sorbent for the efficient removal of Cu2+ from aqueous solution. Sci. Rep. 2017, 7, 45215. [Google Scholar] [CrossRef]
- Irfai, R.A.; Roto, R.; Aprilita, N.H. Preparation of Fe3O4@SiO2 nanoparticles for adsorption of waste containing Cu2+ ions. Key Eng. Mater. 2020, 840, 43–47. [Google Scholar] [CrossRef]
- Chen, L.; Hao, H.Y.; Zhang, W.T.; Shao, Z. Adsorption mechanism of copper ions in aqueous solution by chitosan–carboxymethyl starch composites. J. Appl. Polym. Sci. 2020, 137, 48636. [Google Scholar] [CrossRef]
- Su, C.; Berekute, A.K.; Yu, K.-P. Chitosan@TiO2 composites for the adsorption of copper(II) and antibacterial applications. Sustain. Env. Res. 2022, 32, 27. [Google Scholar] [CrossRef]
Initial Conc. of Metal Ions (mg/L) | Kad (g/mg/min) | R2 |
---|---|---|
50 | Cu2+ | Cu2+ |
2.8 × 10−3 | 0.98 | |
100 | 3.9 × 10−3 | 0.97 |
150 | 4.8 × 10−3 | 0.97 |
Langmuir | Freundlich | |||||
---|---|---|---|---|---|---|
Qm (mg/g) | KL (L/mg) | R2 | 1/n | KF ((mg/g)/(mg/mL)) | R2 | |
MSH@MA NPs/Cu2+ | 190 | 7.85 | 0.98 | 1.73 | 4.8 | 0.95 |
Type of Adsorbent | Adsorptionmax (mg/g) | Reference |
---|---|---|
Sulfur-functionalized silica microspheres | 62.3 | [43] |
Amino-functionalized mesoporous silica | 36.4 | [44] |
Mesoporous silica SBA-15-triethylenetetramine | 23.9 | [45] |
Multi-modified granulated SBA-15 | 31.8 | [46] |
Dopamine-functionalized silica NPs | 58.7 | [47] |
Fe3O4@SiO2 nanoparticles | 51.04 | [48] |
Chitosan–carboxymethyl starch composite | 95 | [49] |
Chitosan@TiO2 composites | 31 | [50] |
Mercapto–amine-modified mesoporous silica adsorbent | 190 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mane, S.M.; Raorane, C.J.; Shin, J.C. Synthesis of Mesoporous Silica Adsorbent Modified with Mercapto–Amine Groups for Selective Adsorption of Cu2+ Ion from Aqueous Solution. Nanomaterials 2022, 12, 3232. https://doi.org/10.3390/nano12183232
Mane SM, Raorane CJ, Shin JC. Synthesis of Mesoporous Silica Adsorbent Modified with Mercapto–Amine Groups for Selective Adsorption of Cu2+ Ion from Aqueous Solution. Nanomaterials. 2022; 12(18):3232. https://doi.org/10.3390/nano12183232
Chicago/Turabian StyleMane, Sagar M., Chaitany Jayprakash Raorane, and Jae Cheol Shin. 2022. "Synthesis of Mesoporous Silica Adsorbent Modified with Mercapto–Amine Groups for Selective Adsorption of Cu2+ Ion from Aqueous Solution" Nanomaterials 12, no. 18: 3232. https://doi.org/10.3390/nano12183232
APA StyleMane, S. M., Raorane, C. J., & Shin, J. C. (2022). Synthesis of Mesoporous Silica Adsorbent Modified with Mercapto–Amine Groups for Selective Adsorption of Cu2+ Ion from Aqueous Solution. Nanomaterials, 12(18), 3232. https://doi.org/10.3390/nano12183232