Anisotropy Engineering of ZnO Nanoporous Frameworks: A Lattice Dynamics Simulation
Abstract
:1. Introduction
2. Computational Methods
3. Results
3.1. Models of Nanoporous Framework Structures
3.2. Bulk Moduli of Nanoporous Framework Structures
3.3. Young’s Moduli and Elastic Constants of the Nanoporous Framework Structures
3.4. Anisotropy of Nanoporous Framework Structures
4. Discussions
Universal Features of the Characterization of the Nanoporous Framework
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Özgür, Ü.; Alivov Ya, I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Doğan, S.; Avrutin, V.; Cho, S.-J.; Morkoç, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301. [Google Scholar] [CrossRef]
- Djurisic, A.B.; Leung, Y.H. Optical Properties of ZnO Nanostructures. Small 2006, 2, 944–961. [Google Scholar] [CrossRef] [PubMed]
- Kołodziejczak-Radzimska, A.; Jesionowski, T. Zinc Oxide—From Synthesis to Application: A Review. Materials 2014, 7, 2833–2881. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Haw, C.Y.; Zheng, Z.; Kang, J.; Zheng, J.-C.; Wang, H.-Q. Biosynthesis of Zinc Oxide Nanomaterials from Plant Extracts and Future Green Prospects: A Topical Review. Adv. Sustain. Syst. 2021, 5, 2000266. [Google Scholar] [CrossRef]
- Noman, M.T.; Amor, N.; Petru, M. Synthesis and applications of ZnO nanostructures (ZONSs): A review. Crit. Rev. Solid State Mater. Sci. 2022, 47, 99–141. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Q.; Xu, L.; Zhang, Z.; Kang, Z.; Liao, Q.; Zhang, Y. Interface Engineering in 1D ZnO-Based Heterostructures for Photoelectrical Devices. Adv. Funct. Mater. 2022, 32, 2106887. [Google Scholar] [CrossRef]
- Wang, Z.L. Zinc oxide nanostructures: Growth, properties and applications. J. Phys. Condens. Mater. 2004, 16, R829. [Google Scholar] [CrossRef]
- Pan, X.; Liu, X.; Bermak, A.; Fan, Z. Self-Gating Effect Induced Large Performance Improvement of ZnO Nanocomb Gas Sensors. ACS Nano. 2013, 7, 9318–9324. [Google Scholar] [CrossRef]
- Wang, J.X.; Sun, X.W.; Wei, A.; Lei, Y.; Cai, X.P.; Li, C.M.; Dong, Z.L. Zinc oxide nanocomb biosensor for glucose detection. Appl. Phys. Lett. 2006, 88, 233106. [Google Scholar] [CrossRef]
- Mai, W.; Zhang, L.; Gu, Y.; Huang, S.; Zhang, Z.; Lao, C.; Yang, P.; Qiang, P.; Chen, Z. Mechanical and electrical characterization of semiconducting ZnO nanorings by direct nano-manipulation. Appl. Phys. Lett. 2012, 101, 081910. [Google Scholar] [CrossRef]
- Sahu, V.; Goel, S.; Sharma, R.K.; Singh, G. Zinc oxide nanoring embedded lacey graphene nanoribbons in symmetric/asymmetric electrochemical capacitive energy storage. Nanoscale 2015, 7, 20642–20651. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Kong, X.Y.; Wang, Z.L. Doping and planar defects in the formation of single-crystal ZnO nanorings. Phys. Rev. B 2004, 70, 235408. [Google Scholar] [CrossRef]
- Luo, P.; Xie, M.; Luo, J.; Kan, H.; Wei, Q. Nitric oxide sensors using nanospiral ZnO thin film deposited by GLAD for application to exhaled human breath. RSC Adv. 2020, 10, 14877–14884. [Google Scholar] [CrossRef]
- Dobrokhotov, V.; Oakes, L.; Sowell, D.; Larin, A.; Hall, J.; Kengne, A.; Bakharev, P.; Corti, G.; Cantrell, T.; Prakash, T.; et al. ZnO coated nanospring-based chemiresistors. J. Appl. Phys. 2012, 111, 044311. [Google Scholar] [CrossRef]
- Yan, H.; Johnson, J.; Law, M.; He, R.; Knutsen, K.; McKinney, J.R.; Pham, J.; Saykally, R.; Yang, P. ZnO Nanoribbon Microcavity Lasers. Adv. Mater. 2003, 15, 1907–1911. [Google Scholar] [CrossRef]
- Johnson, J.C.; Knutsen, K.P.; Yan, H.; Law, M.; Zhang, Y.; Yang, P.; Saykally, R.J. Ultrafast Carrier Dynamics in Single ZnO Nanowire and Nanoribbon Lasers. Nano Lett. 2004, 4, 197–204. [Google Scholar] [CrossRef]
- Zhou, X.; Hu, Z.; Fan, Y.; Chen, S.; Ding, W.; Xu, N. Microspheric Organization of Multilayered ZnO Nanosheets with Hierarchically Porous Structures. J. Phys. Chem. C 2008, 112, 11722–11728. [Google Scholar] [CrossRef]
- Huang, X.H.; Xia, X.H.; Yuan, Y.F.; Zhou, F. Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries. Electrochim. Acta 2011, 56, 4960–4965. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, H.; Ni, Y.; Zhang, Q.; Chen, J. Porous nanosheet-based ZnO microspheres for the construction of direct electrochemical biosensors. Biosens. Bioelectron. 2008, 24, 93–98. [Google Scholar] [CrossRef]
- Liu, S.; Li, C.; Yu, J.; Xiang, Q. Improved visible-light photocatalytic activity of porous carbon self-doped ZnO nanosheet-assembled flowers. CrystEngComm 2011, 13, 2533–2541. [Google Scholar] [CrossRef]
- Huang, M.H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Room-Temperature Ultraviolet Nanowire Nanolasers. Science 2001, 292, 1897–1899. [Google Scholar] [CrossRef] [PubMed]
- Kind, H.; Yan, H.; Messer, B.; Law, M.; Yang, P. Nanowire Ultraviolet Photodetectors and Optical Switches. Adv. Mater. 2002, 14, 158–160. [Google Scholar] [CrossRef]
- Law, M.; Greene, L.E.; Johnson, J.C.; Saykally, R.; Yang, P. Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455–459. [Google Scholar] [CrossRef] [PubMed]
- Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S.A.; Aplin, D.P.R.; Park, J.; Bao, X.Y.; Lo, Y.H.; Wang, D. ZnO Nanowire UV Photodetectors with High Internal Gain. Nano Lett. 2007, 7, 1003–1009. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.-Q.; Chu, T.-J.; Li, Y.-C.; Li, X.; Liao, X.; Wang, X.; Zhou, H.; Kang, J.; Chang, K.-C.; et al. Tuning the nanostructures and optical properties of undoped and N-doped ZnO by supercritical fluid treatment. AIP Adv. 2018, 8, 055310. [Google Scholar] [CrossRef]
- Yin, W.; Shen, Y.; Zou, F.; Hu, X.-L.; Chi, B.; Huang, Y.-H. Metal—Organic Framework Derived ZnO/ZnFe2O4/C Nanocages as Stable Cathode Material for Reversible Lithium-Oxygen Batteries. ACS Appl. Mater. Interfaces 2015, 7, 4947–4954. [Google Scholar] [CrossRef]
- Carrasco, J.; Illas, F.; Bromley, S.T. Ultralow-Density Nanocage-Based Metal-Oxide Polymorphs. Phys. Rev. Lett. 2007, 99, 235502. [Google Scholar] [CrossRef]
- Huang, Z.; Lü, T.-Y.; Wang, H.-Q.; Zheng, J.-C. Thermoelectric properties of the 3C, 2H, 4H, and 6H polytypes of the wide-band-gap semiconductors SiC, GaN, and ZnO. AIP Adv. 2015, 5, 097204. [Google Scholar] [CrossRef]
- Shen, X.; Allen, P.B.; Muckerman, J.T.; Davenport, J.W.; Zheng, J.-C. Wire versus Tube: Stability of Small One Dimensional ZnO Nanostructures. Nano Lett. 2007, 7, 2267–2271. [Google Scholar] [CrossRef]
- Zhang, Y.; Wen, Y.-H.; Zheng, J.-C.; Zhu, Z.-Z. Direct to indirect band gap transition in ultrathin ZnO nanowires under uniaxial compression. Appl. Phys. Lett. 2009, 94, 113114. [Google Scholar] [CrossRef]
- Zhang, Y.; Wen, Y.-H.; Zheng, J.-C.; Zhu, Z.-Z. Strain-induced structural and direct-to-indirect band gap transition in ZnO nanotubes. Phys. Lett. A 2010, 374, 2846–2849. [Google Scholar] [CrossRef]
- Kang, J.; Zhang, Y.; Wen, Y.-H.; Zheng, J.-C.; Zhu, Z.-Z. First-principles study on the structural and electronic properties of ultrathin ZnO nanofilms. Phys. Lett. A 2010, 374, 1054–1058. [Google Scholar] [CrossRef]
- Li, Y.-L.; Fan, Z.; Zheng, J.-C. Enhanced thermoelectric performance in graphitic ZnO (0001) nanofilms. J. Appl. Phys. 2013, 113, 083705. [Google Scholar] [CrossRef]
- Zhou, H.; Wu, L.; Wang, H.-Q.; Zheng, J.-C.; Zhang, L.; Kisslinger, K.; Li, Y.; Wang, Z.; Cheng, H.; Ke, S.; et al. Interfaces between hexagonal and cubic oxides and their structure alternatives. Nat. Commun. 2017, 8, 1474. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, H.-Q.; Li, Y.; Li, K.; Kang, J.; Zheng, J.-C.; Jiang, Z.; Huang, Y.; Wu, L.; Zhang, L.; et al. Evolution of Wurtzite ZnO Films on Cubic MgO (001) Substrates: A Structural, Optical, and Electronic Investigation of the Misfit Structures. ACS Appl. Mater. Interfaces 2014, 6, 13823–13832. [Google Scholar] [CrossRef]
- Yuan, X.; Zhou, H.; Wang, H.-Q.; Wang, X.-D.; Geng, W.; Zhan, H.; Kisslinger, K.; Zhang, L.; Xu, M.; Chen, Q.Y.; et al. Interface structures of inclined ZnO thin film on (0 1 1)-MgO substrate with bulk-like optical properties. Appl. Surf. Sci. 2020, 509, 144781. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.-Q.; Ibrahim, K.; Wang, J.-O.; Wu, R.; Qian, H.-J.; Wang, H.; Lei, T.; Wang, Z.; Li, X.; et al. Interfacial electronic states of misfit heterostructure between hexagonal ZnO and cubic NiO. Phys. Rev. Mater. 2020, 4, 124601. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, H.-Q.; Zheng, J.-C.; Wang, X.-D.; Zhang, Y.; Kang, J.; Zhang, L.; Kisslinger, K.; Wu, R.; Wang, J.-O.; et al. Heteroepitaxial registry and band structures at the polar-to-polar STO/ZnO (0001) interfaces. Appl. Surf. Sci. 2021, 570, 151189. [Google Scholar] [CrossRef]
- Zheng, J.C.; Wang, H.Q. Principles and applications of a comprehensive characterization method combining synchrotron radiation technology, transmission electron microscopy, and density functional theory. Sci. Sin. Phys. Mech. Astron. 2021, 51, 030007. [Google Scholar] [CrossRef]
- Wang, H.Q.; Xu, J.; Lin, X.; Li, Y.; Kang, J.; Zheng, J.-C. Determination of the Embedded Electronic States at Nanoscale Interface via Surface-Sensitive Photoemission Spectroscopy. Light Sci. Appl. 2021, 10, 153. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.-Q.; Zhou, H.; Du, D.; Geng, W.; Lin, D.; Chen, X.; Zhan, H.; Zhou, Y.; Kang, J. Tuning the Surface Morphologies and Properties of ZnO Films by the Design of Interfacial Layer. Nanoscale Res. Lett. 2017, 12, 551. [Google Scholar] [CrossRef] [PubMed]
- Jing, G.; Zhang, X.; Yu, D. Effect of surface morphology on the mechanical properties of ZnO nanowires. Appl. Phys. A 2010, 100, 473–478. [Google Scholar] [CrossRef]
- Hu, J.; Pan, B.C. Surface effect on the size- and orientation-dependent elastic properties of single-crystal ZnO nanostructures. J. Appl. Phys. 2009, 105, 034302. [Google Scholar] [CrossRef]
- Jaffe, J.E.; Harrison, N.M.; Hess, A.C. Ab initio study of ZnO (1010) surface relaxation. Phys. Rev. B 1994, 49, 11153–11158. [Google Scholar] [CrossRef] [PubMed]
- Schröer, P.; Krüger, P.; Pollmann, J. Self-consistent electronic-structure calculations of the (1010) surfaces of the wurtzite compounds ZnO and CdS. Phys. Rev. B 1994, 49, 17092–17101. [Google Scholar] [CrossRef]
- Meyer, B.; Marx, D. Density-functional study of the structure and stability of ZnO surfaces. Phys. Rev. B 2003, 67, 035403. [Google Scholar] [CrossRef]
- Zheng, J.-C. Asymmetrical transport distribution function: Skewness as a key to enhance thermoelectric performance. Research 2022, 2022, 9867639. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, S.; Xu, M.; Wang, Y.; Zhu, B.; Zhang, S.; Huang, W.; Wu, S. Hierarchically Porous ZnO Architectures for Gas Sensor Application. Cryst. Growth Des. 2009, 9, 3532–3537. [Google Scholar] [CrossRef]
- Sieradzki, K.; Li, R. Fracture Behavior of a Solid with Random Porosity. Phys. Rev. Lett. 1986, 56, 2509–2512. [Google Scholar] [CrossRef]
- Oh, I.-H.; Nomura, N.; Masahashi, N.; Hanada, S. Mechanical properties of porous titanium compacts prepared by powder sintering. Scr. Mater. 2003, 49, 1197–1202. [Google Scholar] [CrossRef]
- Cramer, M.; Sevostianov, I. Effect of pore distribution on elastic stiffness and fracture toughness of porous materials. Int. J. Fract. 2009, 160, 189–196. [Google Scholar] [CrossRef]
- Hoey, D.; Taylor, D. Quantitative analysis of the effect of porosity on the fatigue strength of bone cement. Acta Biomater. 2009, 5, 719–726. [Google Scholar] [CrossRef] [PubMed]
- Sevostianov, I.; Kushch, V. Effect of pore distribution on the statistics of peak stress and overall properties of porous material. Int. J. Solids Struct. 2009, 46, 4419–4429. [Google Scholar] [CrossRef]
- Li, B.; Wang, B.; Reid, S.R. Effective elastic properties of randomly distributed void models for porous materials. Int. J. Mech. Sci. 2010, 52, 726–732. [Google Scholar] [CrossRef]
- Li, X.-J.; Li, N.; Ren, F.; Wang, K.H.; Koh, C.L.; Wu, M.; Wang, H.-Q.; Zheng, J.-C. Route to design highly efficient thermal rectifiers from microstructured cellular biomorphic materials. J. Mater. Sci. 2018, 53, 13955–13965. [Google Scholar] [CrossRef]
- Chauveau, J.-M.; Teisseire, M.; Kim-Chauveau, H.; Morhain, C.; Deparis, C.; Vinter, B. Anisotropic strain effects on the photoluminescence emission from heteroepitaxial and homoepitaxial nonpolar (Zn,Mg)O/ZnO quantum wells. J. Appl. Phys. 2011, 109, 102420. [Google Scholar] [CrossRef]
- Wang, Z.; Lü, T.-Y.; Wang, H.-Q.; Feng, Y.P.; Zheng, J.-C. High anisotropy of fully hydrogenated borophene. Phys. Chem. Chem. Phys. 2016, 18, 31424–31430. [Google Scholar] [CrossRef]
- Cheng, H.; Zheng, J.-C. Ab initio study of anisotropic mechanical and electronic properties of strained carbon-nitride nanosheet with interlayer bonding. Front. Phys. 2021, 16, 43505. [Google Scholar] [CrossRef]
- Gale, J.D.; Rohl, A.L. The general utility lattice program (GULP). Mol. Simul. 2003, 29, 291–341. [Google Scholar] [CrossRef]
- Wang, S.; Fan, Z.; Koster, R.S.; Fang, C.; van Huis, M.A.; Yalcin, A.O.; Tichelaar, F.D.; Zandbergen, H.W.; Vlugt, T.J.H. New Ab Initio Based Pair Potential for Accurate Simulation of Phase Transitions in ZnO. J. Phys. Chem. C 2014, 118, 11050–11061. [Google Scholar] [CrossRef]
- Gaillac, R.; Pullumbi, P.; Coudert, F.-X. ELATE: An open-source online application for analysis and visualization of elastic tensors. J. Phys. Condens. Matter. 2016, 28, 275201. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.L. Predicting Useful Materials. Science 1993, 261, 307–308. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.-C.; Huan, C.H.A.; Wee, A.T.S.; Wang, R.-Z.; Zheng, Y.-M. Ground-state properties of cubic C-BN solid solutions. J. Phys. Cond. Matter. 1999, 11, 927–935. [Google Scholar] [CrossRef]
- Zheng, J.-C.; Wang, H.-Q.; Huan, C.H.A.; Wee, A.T.S. The structural and electronic properties of (AlN)x(C2)1−x and (AlN)x(BN)1-x alloys. J. Phys. Cond. Matter. 2001, 13, 5295–5311. [Google Scholar] [CrossRef]
- Zheng, J.C.; Payne, M.C.; Feng, Y.P.; Lim, A.T.L. Stability and electronic properties of carbon phosphide compounds with 1:1 stoichiometry. Phys. Rev. B 2003, 67, 153105. [Google Scholar] [CrossRef]
- Zheng, J.-C. Superhard hexagonal transition metal and its carbide and nitride: Os, OsC and OsN. Phys. Rev. B 2005, 72, 052105. [Google Scholar] [CrossRef]
- Jaffe, J.E.; Hess, A.C. Hartree-Fock study of phase changes in ZnO at high pressure. Phys. Rev. B 1993, 48, 7903–7909. [Google Scholar] [CrossRef] [PubMed]
- Desgreniers, S. High-density phases of ZnO: Structural and compressive parameters. Phys. Rev. B 1998, 58, 14102–14105. [Google Scholar] [CrossRef]
- Raymand, D.; van Duin, A.C.T.; Baudin, M.; Hermansson, K. A reactive force field (ReaxFF) for zinc oxide. Surf. Sci. 2008, 602, 1020–1031. [Google Scholar] [CrossRef]
- Jaffe, J.E.; Snyder, J.A.; Lin, Z.; Hess, A.C. LDA and GGA calculations for high-pressure phase transitions in ZnO and MgO. Phys. Rev. B 2000, 62, 1660–1665. [Google Scholar] [CrossRef]
- Erhart, P.; Albe, K.; Klein, A. First-principles study of intrinsic point defects in ZnO: Role of band structure, volume relaxation, and finite-size effects. Phys. Rev. B 2006, 73, 205203. [Google Scholar] [CrossRef]
- Lee, J.; Lee, S.-C.; Hwang, C.S.; Choi, J.-H. Thermodynamic stability of various phases of zinc tin oxides from ab initio calculations. J. Mater. Chem. C 2013, 1, 6364–6374. [Google Scholar] [CrossRef]
- Qiao, Q.; Zhou, S.; Tao, J.; Zheng, J.C.; Wu, L.; Ciocys, S.T.; Iavarone, M.; Srolovitz, D.J.; Karapetrov, G.; Zhu, Y. Anisotropic charge density wave in layered 1T-TiSe2. Phys. Rev. Mater. 2017, 1, 054002. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sa, N.; Chong, S.-S.; Wang, H.-Q.; Zheng, J.-C. Anisotropy Engineering of ZnO Nanoporous Frameworks: A Lattice Dynamics Simulation. Nanomaterials 2022, 12, 3239. https://doi.org/10.3390/nano12183239
Sa N, Chong S-S, Wang H-Q, Zheng J-C. Anisotropy Engineering of ZnO Nanoporous Frameworks: A Lattice Dynamics Simulation. Nanomaterials. 2022; 12(18):3239. https://doi.org/10.3390/nano12183239
Chicago/Turabian StyleSa, Na, Sue-Sin Chong, Hui-Qiong Wang, and Jin-Cheng Zheng. 2022. "Anisotropy Engineering of ZnO Nanoporous Frameworks: A Lattice Dynamics Simulation" Nanomaterials 12, no. 18: 3239. https://doi.org/10.3390/nano12183239
APA StyleSa, N., Chong, S. -S., Wang, H. -Q., & Zheng, J. -C. (2022). Anisotropy Engineering of ZnO Nanoporous Frameworks: A Lattice Dynamics Simulation. Nanomaterials, 12(18), 3239. https://doi.org/10.3390/nano12183239