High-Throughput Predictions of the Stabilities of Multi-Type Long-Period Stacking Ordered Structures in High-Performance Mg Alloys
Abstract
:1. Introduction
2. Theoretical Model
3. Methodology
4. Results and Discussion
5. Conclusions
- (1)
- The LPSO structures for 9R, 12H, 15R, and 16H are essentially easy to form and exist stably in Mg metal, and the 15R phase is the easiest to form and stabilize among these LPSO structures, but the others for 4H, 6H, and 8H are comparatively difficult to form and exist stably owing to their relatively high ISFEs.
- (2)
- The calculated results of interaction energies indicate that 44 types of solute atoms have different segregation characteristics in m phases, including attractions and repulsions by the SFs of m phases.
- (3)
- These alloying elements, such as elements (Sb, Te, and Cs) for 4H, elements (P, S, Fe, Sb, and Te) for 6H, 8H, 9R, and 15R, elements (P, S, Sb, and Te) for 12H, and elements (P, S, Mn, Fe, Sb, Te, Cs, and Ba) for 16H, can markedly promote structural stabilizations of m phases and become potential candidates in improving mechanical properties of Mg alloys.
- (4)
- A high temperature inhibits the stabilities of LPSO structures. These alloying elements, such as elements (Sb, Te, and Cs) for 4H, elements (S, Fe, Sb, and Te) for 6H, 8H, 9R, 15R, and 16H, and elements (S, Sb, and Te) for 12H, can effectively promote structural stabilizations of m phases at high temperature, improving mechanical properties of Mg alloys at high temperatures.
- (5)
- Two-dimensional diagrams reveal that S and Fe atoms are the most likely to promote the stabilities of the 16H structure with respect to the other m phases, but the Fe atom tends to suppress structural stabilizations of the 4H and 12H phases.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, X.J.; Xu, D.K.; Wu, R.Z.; Chen, X.B.; Peng, Q.M.; Jin, L.; Xin, Y.C.; Zhang, Z.Q.; Liu, Y.; Chen, X.H.; et al. What is going on in magnesium alloys? J. Mater. Sci. Technol. 2018, 34, 245–247. [Google Scholar] [CrossRef]
- Zhao, X.; Gao, P.C.; Chen, G.; Wei, J.F.; Zhu, Z.; Yan, F.F.; Zhang, Z.M.; Wang, Q. Effects of aging treatments on low-cycle fatigue behavior of extruded AZ80 for automobile wheel disks. Mater. Sci. Eng. A 2021, 799, 140366. [Google Scholar] [CrossRef]
- Song, J.F.; She, J.; Chen, D.L.; Pan, F.S. Latest research advances on magnesium and magnesium alloys worldwide. J. Magnes. Alloy. 2020, 8, 1–41. [Google Scholar] [CrossRef]
- Rahman, M.; Li, Y.C.; Wen, C. HA coating on Mg alloys for biomedical applications: A review. J. Magnes. Alloy. 2020, 8, 929–943. [Google Scholar] [CrossRef]
- Pan, F.S.; Yang, M.B.; Chen, X.H. A Review on Casting Magnesium Alloys: Modification of Commercial Alloys and Development of New Alloys. J. Mater. Sci. Technol. 2016, 32, 1211–1221. [Google Scholar] [CrossRef]
- Cao, F.Y.; Zhang, J.; Li, K.K.; Song, G.L. Influence of heat treatment on corrosion behavior of hot rolled Mg5Gd alloys. T. Nonferr. Metal. Soc. 2021, 31, 939–951. [Google Scholar] [CrossRef]
- Chen, X.Y.; Zhang, Y.; Cong, M.Q.; Lu, Y.L.; Li, X.P. Effect of Sn content on microstructure and tensile properties of as-cast and as-extruded Mg−8Li−3Al−(1,2,3)Sn alloys. T. Nonferr. Metal. Soc. 2020, 30, 2079–2089. [Google Scholar] [CrossRef]
- Gao, C.D.; Li, S.; Liu, L.; Bin, S.Z.; Yang, Y.W.; Peng, S.P.; Shuai, C.J. Dual alloying improves the corrosion resistance of biodegradable Mg alloys prepared by selective laser melting. J. Magnes. Alloy. 2021, 9, 305–316. [Google Scholar] [CrossRef]
- Sułkowski, B.; Janoska, M.; Boczkal, G.; Chulist, R.; Mroczkowski, M.; Pałka, P. The effect of severe plastic deformation on the Mg properties after CEC deformation. J. Magnes. Alloy. 2020, 8, 761–768. [Google Scholar] [CrossRef]
- Yan, Z.M.; Zhang, Z.M.; Li, X.B.; Xu, J.; Wang, Q.; Zhang, G.S.; Zheng, J.; Fan, H.Z.; Xu, K.H.; Zhu, J.X.; et al. A novel severe plastic deformation method and its effect on microstructure, texture and mechanical properties of Mg-Gd-Y-Zn-Zr alloy. J. Alloys Compd. 2020, 822, 153698. [Google Scholar] [CrossRef]
- Yasakau, K.A.; Bastos, A.C.; Haffner, D.; Quandt, E.; Feyerabend, F.; Ferreira, M.G.S.; Zheludkevich, M.L. Sacrificial protection of Mg-based resorbable implant alloy by magnetron sputtered Mg5Gd alloy coating: A short-term study. Corros. Sci. 2021, 189, 109590. [Google Scholar] [CrossRef]
- Acheson, J.G.; McKillop, S.; Ward, J.; Roy, A.; Xu, Z.G.; Boyd, A.R.; Lemoine, P.; Kumta, P.N.; Sankar, J.; Meenan, B.J. Effects of strontium-substitution in sputter deposited calcium phosphate coatings on the rate of corrosion of magnesium alloys. Surf. Coat. Technol. 2021, 421, 127446. [Google Scholar] [CrossRef]
- Li, C.Q.; Tong, Z.P.; He, Y.B.; Huang, H.P.; Dong, Y.; Zhang, P. Comparison on corrosion resistance and surface film of pure Mg and Mg−14Li alloy. T. Nonferr. Metal. Soc. 2020, 30, 2413–2423. [Google Scholar] [CrossRef]
- Wang, B.J.; Wang, S.D.; Xu, D.K.; Han, E.H. Recent progress in fatigue behavior of Mg alloys in air and aqueous media: A review. J. Mater. Sci. Technol. 2017, 33, 1075–1086. [Google Scholar] [CrossRef]
- Molaei, M.; Babaei, K.; Fattah-alhosseini, A. Improving the wear resistance of plasma electrolytic oxidation (PEO) coatings applied on Mg and its alloys under the addition of nano- and micro-sized additives into the electrolytes: A review. J. Magnes. Alloy. 2021, 9, 1164–1186. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, H.Y.; Wang, H.Y.; Liu, G.J.; Jiang, Q.C. Effects of doping atoms on the generalized stacking-fault energies of Mg alloys from first-principles calculations. Scripta Mater. 2013, 69, 445–448. [Google Scholar] [CrossRef]
- Zhang, J.; Dou, Y.C.; Liu, G.B.; Guo, Z.X. First-principles study of stacking fault energies in Mg-based binary alloys. Comp. Mater. Sci. 2013, 79, 564–569. [Google Scholar] [CrossRef]
- Dong, Q.; Zhe, L.; Zhu, H.; Wang, L.Y.; Ying, T.; Jin, Z.H.; Li, D.J.; Ding, W.J.; Zeng, X.Q. Basal-plane stacking-fault energies of Mg alloys: A first-principles study of metallic alloying effects. J. Mater. Sci. Technol. 2018, 34, 1773–1780. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Wang, H.Y.; Wang, C.; Liu, G.J.; Jiang, Q.C. First-principles calculations of generalized stacking fault energy in Mg alloys with Sn, Pb and Sn+Pb dopings. Mater. Sci. Eng. A 2013, 584, 82–87. [Google Scholar] [CrossRef]
- Abe, E.; Kawamura, Y.; Hayashi, K.; Inoue, A. Long-period ordered structure in a high-strength nanocrystalline Mg-1 at% Zn-2 at% Y alloy studied by atomic-resolution Z-contrast STEM. Acta Mater. 2002, 50, 3845–3857. [Google Scholar] [CrossRef]
- Matsuda, M.; Ii, S.; Kawamura, Y.; Ikuhara, Y.; Nishida, M. Variation of long-period stacking order structures in rapidly solidified Mg97Zn1Y2 alloy. Mater. Sci. Eng. A 2005, 393, 269–274. [Google Scholar] [CrossRef]
- Nie, Y.J.; Dai, J.W.; Li, X.; Zhang, X.B. Recent developments on corrosion behaviors of Mg alloys with stacking fault or long period stacking ordered structures. J. Magnes. Alloy. 2021, 9, 1123–1146. [Google Scholar] [CrossRef]
- Xu, D.K.; Han, E.H.; Xu, Y.B. Effect of long-period stacking ordered phase on microstructure, mechanical property and corrosion resistance of Mg alloys: A review. Prog. Nat. Sci. Mater. 2016, 26, 117–128. [Google Scholar] [CrossRef]
- Fan, T.W.; Tang, B.Y.; Peng, L.M.; Ding, W.J. First-principles study of long-period stacking ordered-like multi-stacking fault structures in pure magnesium. Scripta Mater. 2011, 64, 942–945. [Google Scholar] [CrossRef]
- Hagihara, K.; Yokotani, N.; Umakoshi, Y. Plastic deformation behavior of Mg12YZn with 18R long-period stacking ordered structure. Intermetallics 2010, 18, 267–276. [Google Scholar] [CrossRef]
- Mi, S.B.; Jin, Q.Q. New polytypes of long-period stacking ordered structures in Mg–Co–Y alloys. Scripta Mater. 2013, 68, 635–638. [Google Scholar] [CrossRef]
- Jin, Q.Q.; Shao, X.H.; Hu, X.B.; Peng, Z.Z.; Ma, X.L. New polytypes of LPSO structures in an Mg-Co-Y alloy. Philos. Mag. 2017, 97, 1–16. [Google Scholar] [CrossRef]
- Huang, S.; Wang, J.F.; Hou, F.; Li, Y.; Pan, F.S. Effect of Sn on the formation of the long period stacking ordered phase and mechanical properties of Mg–RE–Zn alloy. Mater. Lett. 2014, 137, 143–146. [Google Scholar] [CrossRef]
- Fan, T.W.; Zhang, Q.; Tang, B.Y.; Peng, L.M.; Ding, W.J. Interaction between stacking faults in pure Mg. Eur. Phys. J. B 2011, 82, 143–146. [Google Scholar] [CrossRef]
- Guan, K.; Egami, M.; Egusa, D.; Kimizuka, H.; Yamasaki, M.; Kawamura, Y.; Abe, E. Short-range order clusters in the long-period stacking/order phases with an intrinsic-I type stacking fault in Mg-Co-Y alloys. Scripta Mater. 2022, 207, 114282. [Google Scholar] [CrossRef]
- Fan, T.W.; Wei, L.T.; Tang, B.Y.; Peng, L.M.; Ding, W.J. Effect of temperature-induced solute distribution on stacking fault energy in Mg-X (X=Li, Cu, Zn, Al, Y and Zr) solid solution: A first-principles study. Philos. Mag. 2014, 94, 1578–1587. [Google Scholar] [CrossRef]
- Liu, L.H.; Chen, J.H.; Fan, T.W.; Liu, Z.R.; Zhang, Y.; Yuan, D.W. The possibilities to lower the stacking fault energies of aluminum materials investigated by first-principles energy calculations. Comp. Mater. Sci. 2015, 108, 136–146. [Google Scholar] [CrossRef]
- Hirth, J.P.; Lothe, J. Theory of Dislocations, 2nd ed.; John and Wiley Sons: New York, NY, USA, 1982. [Google Scholar]
- Dontsova, E.; Rottler, J.; Sinclair, C.W. Solute-defect interactions in Al-Mg alloys from diffusive variational Gaussian calculations. Phys. Rev. B 2014, 90, 174102. [Google Scholar] [CrossRef]
- Mermin, N.D. Thermal Properties of the Inhomogeneous Electron Gas. Phys. Rev. 1965, 137, A1441–A1443. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Iikubo, S.; Matsuda, K.; Ohtani, H. Phase stability of long-period stacking structures in Mg-Y-Zn: A first-principles study. Phys. Rev. B 2012, 86, 054105. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhang, J.S.; Zong, X.M.; Xu, C.X.; You, Z.Y.; Nie, K.B. Effects of Ca on the formation of LPSO phase and mechanical properties of Mg-Zn-Y-Mn alloy. Mater. Sci. Eng. A 2015, 648, 37–40. [Google Scholar] [CrossRef]
- Gao, J.J.; Chen, Y.A.; Wang, Y. Effect of Sn element on the formation of LPSO phase and mechanical properties of Mg-6Y-2Zn alloy. Mater. Sci. Eng. A 2018, 711, 334–342. [Google Scholar] [CrossRef]
- Hao, J.Q.; Zhang, J.S.; Xu, C.X.; Zhang, Y.T. Effects of Ti addition on the formation of LPSO phase and yield asymmetry of Mg-Zn-Y-Mn alloy. Mater. Sci. Eng. A 2018, 735, 99–103. [Google Scholar] [CrossRef]
- Li, Y.X.; Yang, C.L.; Zeng, X.Q.; Jin, P.P.; Qiu, D.; Ding, W.J. Microstructure evolution and mechanical properties of magnesium alloys containing long period stacking ordered phase. Mater. Charact. 2018, 141, 286–295. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, T.; Wang, Z.; Tian, Y.; Liu, Y.; Tang, P. High-Throughput Predictions of the Stabilities of Multi-Type Long-Period Stacking Ordered Structures in High-Performance Mg Alloys. Nanomaterials 2022, 12, 3240. https://doi.org/10.3390/nano12183240
Fan T, Wang Z, Tian Y, Liu Y, Tang P. High-Throughput Predictions of the Stabilities of Multi-Type Long-Period Stacking Ordered Structures in High-Performance Mg Alloys. Nanomaterials. 2022; 12(18):3240. https://doi.org/10.3390/nano12183240
Chicago/Turabian StyleFan, Touwen, Zhipeng Wang, Yuanyuan Tian, Yu Liu, and Pingying Tang. 2022. "High-Throughput Predictions of the Stabilities of Multi-Type Long-Period Stacking Ordered Structures in High-Performance Mg Alloys" Nanomaterials 12, no. 18: 3240. https://doi.org/10.3390/nano12183240
APA StyleFan, T., Wang, Z., Tian, Y., Liu, Y., & Tang, P. (2022). High-Throughput Predictions of the Stabilities of Multi-Type Long-Period Stacking Ordered Structures in High-Performance Mg Alloys. Nanomaterials, 12(18), 3240. https://doi.org/10.3390/nano12183240