A Temperature Imaging Method for Multi-Chip High Power LEDs Based on the Magnetic Nanoparticle Thermometer
Abstract
:1. Introduction
2. Model and Simulation
2.1. Temperature Model with Core Size Distribution
2.2. Model for 2-D Temperature Distribution
3. Simulation
4. Experiment
4.1. Experiment System
4.2. Contrast Experiment with PT100 for Measuring Pixel’s Temperature
4.3. 2-D Temperature Imaging Experiment
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Engelmann, U.M.; Roeth, A.A.; Eberbeck, D.; Buhl, E.M.; Neumann, U.P.; Schmitz-Rode, T.; Slabu, I. Combining Bulk Temperature and Nanoheating Enables Advanced Magnetic Fluid Hyperthermia Efficacy on Pancreatic Tumor Cells. Sci. Rep. 2018, 8, 13210. [Google Scholar] [CrossRef]
- Hedayatnasab, Z.; Abnisa, F.; Daud, W.M.A.W. Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater. Design. 2017, 123, 174–196. [Google Scholar] [CrossRef]
- Obaidat, I.M.; Issa, B.; Haik, Y. Magnetic Properties of Magnetic Nanoparticles for Efficient Hyperthermia. Nanomaterials 2015, 5, 63–89. [Google Scholar] [CrossRef]
- Dupont, L.; Avenas, Y.; Jeannin, P.O. Comparison of Junction Temperature Evaluations in a Power IGBT Module Using an IR Camera and Three Thermosensitive Electrical Parameters. IEEE Trans. Ind. Appl. 2013, 49, 1599–1608. [Google Scholar] [CrossRef]
- Feng, H.; Yang, W.; Sin, J.K.O. A Low Recovery Loss Reverse-Conducting IGBT with Metal/P-body Schottky Junctions for Hard-Switching Applications. ECS J. Solid State Sci. Technol. 2015, 5, Q61–Q67. [Google Scholar] [CrossRef]
- Lu, B.; Sharma, S.K. A Literature Review of IGBT Fault Diagnostic and Protection Methods for Power Inverters. IEEE Trans. Ind. Appl. 2009, 45, 1770–1777. [Google Scholar]
- Biber, C. Basics of Thermal Design for LEDs. In Thermal Management for LED Applications; Springer: New York, NY, USA, 2014; pp. 53–69. [Google Scholar]
- Ye, S.; Xiao, F.; Pan, Y.X.; Ma, Y.Y.; Zhang, Q.Y. Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties. Mater. Sci. Eng. R Rep. 2010, 71, 1–34. [Google Scholar] [CrossRef]
- Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Walzer, K.; Lüssem, B.; Leo, K. White organic light-emitting diodes with fluorescent tube efficiency. Nature 2009, 459, 234–238. [Google Scholar] [CrossRef]
- Waltereit, P.; Brandt, O.; Trampert, A.; Grahn, H.T.; Menniger, J.; Ramsteiner, M.; Reiche, M.; Ploog, K.H. Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature 2000, 406, 865–868. [Google Scholar] [CrossRef]
- Ye, H.; Zhang, G. A review of passive thermal management of LED module. J. Semicond. 2011, 32, 014008. [Google Scholar] [CrossRef]
- Suemune, I.; Hayashi, Y.; Kuramitsu, S.; Tanaka, K.; Akazaki, T.; Sasakura, H.; Inoue, R.; Takayanagi, H.; Asano, Y.; Hanamura, E.; et al. A Cooper-Pair Light-Emitting Diode: Temperature Dependence of Both Quantum Efficiency and Radiative Recombination Lifetime. Appl. Phys. Express. 2010, 3, 054001. [Google Scholar] [CrossRef] [Green Version]
- Childs, P.R.N.; Greenwood, J.R.; Long, C.A. Review of temperature measurement. Rev. Sci. Instrum. 2000, 71, 2959–2978. [Google Scholar] [CrossRef]
- Scheeler, R.; Kuester, E.F.; Popović, Z. Sensing Depth of Microwave Radiation for Internal Body Temperature Measurement. IEEE Trans. Antennas Propag. 2014, 62, 1293–1303. [Google Scholar] [CrossRef]
- Nagaso, M.; Moysan, J.; Benjeddou, S.; Massacret, N.; Ploix, M.A.; Komatitsch, D.; Lhuillier, C. Ultrasonic thermometry simulation in a random fluctuating medium: Evidence of the acoustic signature of a one-percent temperature difference. Ultrasonics 2016, 68, 61–70. [Google Scholar] [CrossRef]
- Lei, J.; Wei, J.; Tang, G.; Zhang, Z.; Qian, Q.; Zheng, Z.; Hua, M.; Chen, K.J. Reverse-Blocking Normally-OFF GaN Double-Channel MOS-HEMT With Low Reverse Leakage Current and Low ON-State Resistance. IEEE Electron Device Lett. 2018, 39, 1003–1006. [Google Scholar] [CrossRef]
- Della Corte, F.G.; Pangallo, G.; Carotenuto, R.; Iero, D.; Marra, G.; Merenda, M.; Rao, S. Temperature Sensing Characteristics and Long Term Stability of Power LEDs Used for Voltage vs. Junction Temperature Measurements and Related Procedure. IEEE Access 2020, 8, 43057–43066. [Google Scholar] [CrossRef]
- Liu, Z.-H.; Huang, J.-E.; Gao, Y.-L.; Guo, Z.-Q.; Lin, Y.; Zhu, L.-H.; Chen, Z.; Lu, Y.-J. A Continuous Rectangular-Wave Method for Junction Temperature Measurement of Light-Emitting Diodes. IEEE Trans. Power Electron. 2019, 34, 10414–10424. [Google Scholar] [CrossRef]
- Yang, T.-H.; Huang, H.-Y.; Sun, C.-C.; Glorieux, B.; Lee, X.-H.; Yu, Y.-W.; Chung, T.-Y. Noncontact and Instant Detection of Phosphor Temperature in Phosphor-Converted White LEDs. Sci. Rep. 2018, 8, 296. [Google Scholar] [CrossRef]
- Wang, X.-X.; Jing, L.; Wang, Y.; Gao, Q.; Sun, Q. The Influence of Junction Temperature Variation of LED on the Lifetime Estimation During Accelerated Aging Test. IEEE Access 2018, 7, 4773–4781. [Google Scholar] [CrossRef]
- Azarifar, M.; Ocaksonmez, K.; Cengiz, C.; Aydoğan, R.; Arik, M. Machine Learning to Predict Junction Temperature Based on Optical Characteristics in Solid-State Lighting Devices: A Test on WLEDs. Micromachines 2022, 13, 1245. [Google Scholar] [CrossRef]
- Liu, J.; Mou, Y.; Huang, Y.; Zhao, J.; Peng, Y.; Chen, M. Effects of Bonding Materials on Optical–Thermal Performances and High-Temperature Reliability of High-Power LED. Micromachines 2022, 13, 958. [Google Scholar] [CrossRef]
- Pavlovetc, I.M.; Podshivaylov, E.A.; Chatterjee, R.; Hartland, G.V.; Frantsuzov, P.A.; Kuno, M. Infrared Photothermal Heterodyne Imaging: Contrast Mechanism and Detection Limits. J. Appl. Phys. 2020, 127, 165101. [Google Scholar] [CrossRef]
- Park, T.; Guan, Y.-J.; Liu, Z.-Q.; Zhang, Y. In Operando Micro-Raman Three-Dimensional Thermometry with Diffraction-Limit Spatial Resolution for GaN Based Light-Emitting Diodes. Phys. Rev. Appl. 2018, 10, 034049. [Google Scholar] [CrossRef]
- Weaver, J.B.; Rauwerdink, A.M.; Hansen, E.W. Magnetic nanoparticle temperature estimation. Med. Phys. 2009, 36, 1822–1829. [Google Scholar] [CrossRef]
- Zhong, J.; Liu, W.; Du, Z.; de Morais, P.C.; Xiang, Q.; Xie, Q. A noninvasive, remote and precise method for temperature and concentration estimation using magnetic nanoparticles. Nanotechnology 2012, 23, 075703. [Google Scholar] [CrossRef]
- Zhong, J.; Liu, W.; Kong, L.; de Morais, P.C. A new approach for highly accurate, remote temperature probing using magnetic nanoparticles. Sci. Rep. 2014, 4, 6338. [Google Scholar] [CrossRef]
- Du, Z.; Sun, Y.; Su, R.; Wei, K.; Gan, Y.; Ye, N.; Zou, C.; Liu, W. The phosphor temperature measurement of white light-emitting diodes based on magnetic nanoparticle thermometer. Rev. Sci. Instrum. 2018, 89, 094901. [Google Scholar] [CrossRef]
- Zhong, J.; Schilling, M.; Ludwig, F. Magnetic nanoparticle temperature imaging with a scanning magnetic particle spectrometer. Meas. Sci. Technol. 2018, 29, 115903. [Google Scholar] [CrossRef]
- Du, Z.; Sun, Y.; Higashi, O.; Noguchi, Y.; Enpuku, K.; Draack, S.; Janssen, K.-J.; Kahmann, T.; Zhong, J.; Viereck, T.; et al. Effect of core size distribution on magnetic nanoparticle harmonics for thermometry. Jpn. J. Appl. Phys. 2019, 59, 010904. [Google Scholar] [CrossRef]
- Sun, Y.; Ye, N.; Wang, D.; Du, Z.; Bai, S.; Yoshida, T. An Improved Method for Estimating Core Size Distributions of Magnetic Nanoparticles via Magnetization Harmonics. Nanomaterials 2020, 10, 1623. [Google Scholar] [CrossRef]
- Fodil, K.; Denoual, M.; Dolabdjian, C. Experimental and Analytical Investigation of a 2-D Magnetic Imaging Method Using Magnetic Nanoparticles. IEEE Trans. Magn. 2016, 52, 1–9. [Google Scholar] [CrossRef]
Symbol | k = 2 | k = 2 | k = 3 |
---|---|---|---|
Weight ωk | 0.2 | 0.2 | 0.6 |
Geometric mean μk (nm) | 6 | 15.8 | 25.5 |
Geometric standard deviation σk | 0.4 | 0.15 | 0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Z.; Hu, B.; Ye, N.; Sun, Y.; Zhang, H.; Bai, S. A Temperature Imaging Method for Multi-Chip High Power LEDs Based on the Magnetic Nanoparticle Thermometer. Nanomaterials 2022, 12, 3280. https://doi.org/10.3390/nano12193280
Du Z, Hu B, Ye N, Sun Y, Zhang H, Bai S. A Temperature Imaging Method for Multi-Chip High Power LEDs Based on the Magnetic Nanoparticle Thermometer. Nanomaterials. 2022; 12(19):3280. https://doi.org/10.3390/nano12193280
Chicago/Turabian StyleDu, Zhongzhou, Bin Hu, Na Ye, Yi Sun, Haochen Zhang, and Shi Bai. 2022. "A Temperature Imaging Method for Multi-Chip High Power LEDs Based on the Magnetic Nanoparticle Thermometer" Nanomaterials 12, no. 19: 3280. https://doi.org/10.3390/nano12193280
APA StyleDu, Z., Hu, B., Ye, N., Sun, Y., Zhang, H., & Bai, S. (2022). A Temperature Imaging Method for Multi-Chip High Power LEDs Based on the Magnetic Nanoparticle Thermometer. Nanomaterials, 12(19), 3280. https://doi.org/10.3390/nano12193280