Vanadium-Doped FeBP Microsphere Croissant for Significantly Enhanced Bi-Functional HER and OER Electrocatalyst
Abstract
:1. Introduction
2. Experimental Section
2.1. V-FeBP Electrode Fabrication
2.2. Morphological, Elemental, and Optical Characterizations
2.3. Electrochemical Characterization
3. Results and Discussion
(Precursor solution)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yao, M.; Hu, H.; Sun, B.; Wang, N.; Hu, W.; Komarneni, S. Self-Supportive Mesoporous Ni/Co/Fe Phosphosulfide Nanorods Derived from Novel Hydrothermal Electrodeposition as a Highly Efficient Electrocatalyst for Overall Water Splitting. Small 2019, 15, 1905201. [Google Scholar] [CrossRef]
- Cheng, Y.; Geng, H.; Huang, X. Advanced Water Splitting Electrocatalysts: Via the Design of Multicomponent Heterostructures. Dalt. Trans. 2020, 49, 2761–2765. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, M.; Yang, Y.; Yao, T.; Han, H.; Sun, L. Electroless Plated Ni-Bx Films as Highly Active Electrocatalysts for Hydrogen Production from Water over a Wide PH Range. Nano Energy 2016, 19, 98–107. [Google Scholar] [CrossRef]
- Cai, L.; Lin, Z.; Wang, M.; Pan, F.; Chen, J.; Wang, Y.; Shen, X.; Chai, Y. Improved Interfacial H2O Supply by Surface Hydroxyl Groups for Enhanced Alkaline Hydrogen Evolution. J. Mater. Chem. A 2017, 5, 24091–24097. [Google Scholar] [CrossRef]
- Li, H.; Wen, P.; Li, Q.; Dun, C.; Xing, J.; Lu, C.; Adhikari, S.; Jiang, L.; Carroll, D.L.; Geyer, S.M. Earth-Abundant Iron Diboride (FeB2) Nanoparticles as Highly Active Bifunctional Electrocatalysts for Overall Water Splitting. Adv. Energy Mater. 2017, 7, 1700513. [Google Scholar] [CrossRef]
- Ahn, H.J.; Yoon, K.Y.; Kwak, M.J.; Park, J.; Jang, J.H. Boron Doping of Metal-Doped Hematite for Reduced Surface Recombination in Water Splitting. ACS Catal. 2018, 8, 11932–11939. [Google Scholar] [CrossRef]
- Qu, S.; Huang, J.; Yu, J.; Chen, G.; Hu, W.; Yin, M.; Zhang, R.; Chu, S.; Li, C. Ni3S2 Nanosheet Flowers Decorated with CdS Quantum Dots as a Highly Active Electrocatalysis Electrode for Synergistic Water Splitting. ACS Appl. Mater. Interfaces 2017, 9, 29660–29668. [Google Scholar] [CrossRef]
- Zhang, B.; Shan, J.; Wang, W.; Tsiakaras, P.; Li, Y. Oxygen Vacancy and Core–Shell Heterojunction Engineering of Anemone-Like CoP@CoOOH Bifunctional Electrocatalyst for Efficient Overall Water Splitting. Small 2022, 18, 2106012. [Google Scholar] [CrossRef]
- Li, C.F.; Zhao, J.W.; Xie, L.J.; Wu, J.Q.; Li, G.R. Fe Doping and Oxygen Vacancy Modulated Fe-Ni5P4/NiFeOH Nanosheets as Bifunctional Electrocatalysts for Efficient Overall Water Splitting. Appl. Catal. B Environ. 2021, 291, 119987. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, Y.; Mu, Z.; Wang, Y.; Ali, U.; Jing, S.; Xing, S. Urea-Assisted Enhanced Electrocatalytic Activity of MoS2-Ni3S2 for Overall Water Splitting. Inorg. Chem. Front. 2020, 7, 3588–3597. [Google Scholar] [CrossRef]
- Yuan, S.; Pu, Z.; Zhou, H.; Yu, J.; Amiinu, I.S.; Zhu, J.; Liang, Q.; Yang, J.; He, D.; Hu, Z.; et al. A Universal Synthesis Strategy for Single Atom Dispersed Cobalt/Metal Clusters Heterostructure Boosting Hydrogen Evolution Catalysis at All PH Values. Nano Energy 2019, 59, 472–480. [Google Scholar] [CrossRef]
- Jeong, J.H.; Kunwar, S.; Pandit, S.; Lee, J. CoP2 Nanoparticles Deposited on Nanometer-Thick Pt-Coated Fluorine-Doped Tin Oxide Substrates as Electrocatalysts for Simultaneous Hydrogen Evolution and Oxygen Evolution. ACS Appl. Nano Mater. 2020, 3, 6507–6515. [Google Scholar] [CrossRef]
- Wu, Z.; Nie, D.; Song, M.; Jiao, T.; Fu, G.; Liu, X. Facile Synthesis of Co-Fe-B-P Nanochains as an Efficient Bifunctional Electrocatalyst for Overall Water-Splitting. Nanoscale 2019, 11, 7506–7512. [Google Scholar] [CrossRef]
- Kunwar, S.; Pandit, S.; Jeong, J.H.; Lee, J. Hybrid CoP2–Pt–FTO Nanoarchitecture for Bifunctional Electrocatalysts in H2 Generation by Water Splitting. Mater. Today Sustain. 2020, 9, 100045. [Google Scholar] [CrossRef]
- Xu, K.; Guo, W.; Zhang, H.; Zhou, H.; Zhu, Z.; Zhou, Y. An efficient Vanadium/Cobalt Metaphosphate Electrocatalyst for Hydrogen and Oxygen Evolution in Alkaline Water Splitting. Inorg. Chem. Front. 2022, 9, 4808–4816. [Google Scholar] [CrossRef]
- Xu, N.; Cao, G.; Chen, Z.; Kang, Q.; Dai, H.; Wang, P. Cobalt Nickel Boride as an Active Electrocatalyst for Water Splitting. J. Mater. Chem. A 2017, 5, 12379–12384. [Google Scholar] [CrossRef]
- Spanos, I.; Tesch, M.F.; Yu, M.; Tüysüz, H.; Zhang, J.; Feng, X.; Müllen, K.; Schlögl, R.; Mechler, A.K. Facile Protocol for Alkaline Electrolyte Purification and Its Influence on a Ni-Co Oxide Catalyst for the Oxygen Evolution Reaction. ACS Catal. 2019, 9, 8165–8170. [Google Scholar] [CrossRef]
- Hao, W.; Yao, D.; Xu, Q.; Wang, R.; Zhang, C.; Guo, Y.; Sun, R.; Huang, M.; Chen, Z. Highly Efficient Overall-Water Splitting Enabled via Grafting Boron-Inserted Fe-Ni Solid Solution Nanosheets onto Unconventional Skeleton. Appl. Catal. B Environ. 2021, 292, 120188. [Google Scholar] [CrossRef]
- Chunduri, A.; Gupta, S.; Bapat, O.; Bhide, A.; Fernandes, R.; Patel, M.K.; Bambole, V.; Miotello, A.; Patel, N. A Unique Amorphous Cobalt-Phosphide-Boride Bifunctional Electrocatalyst for Enhanced Alkaline Water-Splitting. Appl. Catal. B Environ. 2019, 259, 118051. [Google Scholar] [CrossRef]
- Liu, X.; Wu, J.; Guo, X. Ternary Boron-, Phosphorus- and Oxygen-Doped Amorphous Nickel Nanoalloys for Enhanced Activity towards the Oxygen Evolution Reaction. Electrochem. Commun. 2020, 111, 106649. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, L.; Wang, J.; Cao, Y.; Tu, J.; Zhang, X.; Ding, L. Recent Progress in CoP-Based Materials for Electrochemical Water Splitting. Int. J. Hydrog. Energy 2021, 46, 34194–34215. [Google Scholar] [CrossRef]
- Deng, X.; Zhang, R.; Li, Q.; Gu, W.; Hao, L. Bimetallic Boron Phosphide Ni-2Fe-BP as an Active Water-Splitting Catalyst. ChemistrySelect 2022, 7, e202200091. [Google Scholar] [CrossRef]
- Habib, M.A.; Mandavkar, R.; Burse, S.; Lin, S.; Kulkarni, R.; Patil, C.S.; Jeong, J.-H.; Lee, J. Design of Boron-Based Ternary W3CoB3 Electrocatalyst for the Improved HER and OER Performances. Mater. Today Energy 2022, 26, 101021. [Google Scholar] [CrossRef]
- Popczun, E.J.; McKone, J.R.; Read, C.G.; Biacchi, A.J.; Wiltrout, A.M.; Lewis, N.S.; Schaak, R.E. Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2013, 135, 9267–9270. [Google Scholar] [CrossRef] [PubMed]
- Mandavkar, R.; Habib, A.; Lin, S.; Kulkarni, R.; Burse, S.; Jeong, J.; Lee, J. Electron Enriched Ternary NiMoB Electrocatalyst for Improved Overall Water Splitting: Better Performance as Compared to the Pt/C || RuO2 at High Current Density. Appl. Mater. Today 2022, 29, 101579. [Google Scholar] [CrossRef]
- Saad, A.; Gao, Y.; Owusu, K.A.; Liu, W.; Wu, Y.; Ramiere, A.; Guo, H.; Tsiakaras, P.; Cai, X. Ternary Mo2NiB2 as a Superior Bifunctional Electrocatalyst for Overall Water Splitting. Small 2022, 18, 2104303. [Google Scholar] [CrossRef]
- Lin, S.; Habib, A.; Mandavkar, R.; Kulkarni, R.; Burse, S.; Chung, Y.; Liu, C.; Wang, Z.; Lin, S.; Jeong, J.; et al. Higher Water-Splitting Performance of Boron-Based Porous CoMnB Electrocatalyst over the Benchmarks at High Current in 1 m KOH and Real Sea Water. Adv. Sustain. Syst. 2022, 6, 2270022. [Google Scholar] [CrossRef]
- Zhang, H.; Maijenburg, A.W.; Li, X.; Schweizer, S.L.; Wehrspohn, R.B. Bifunctional Heterostructured Transition Metal Phosphides for Efficient Electrochemical Water Splitting. Adv. Funct. Mater. 2020, 30, 2003261. [Google Scholar] [CrossRef]
- Zhu, Z.; Xu, K.; Guo, W.; Zhang, H.; Xiao, X.; He, M.; Yu, T.; Zhao, H.; Zhang, D.; Yang, T. Vanadium-Phosphorus Incorporation Induced Interfacial Modification on Cobalt Catalyst and Its Super Electrocatalysis for Water Splitting in Alkaline Media. Appl. Catal. B Environ. 2022, 304, 120985. [Google Scholar] [CrossRef]
- Cheng, C.; Zheng, F.; Zhang, C.; Du, C.; Fang, Z.; Zhang, Z.; Chen, W. High-Efficiency Bifunctional Electrocatalyst Based on 3D Freestanding Cu Foam in Situ Armored CoNi Alloy Nanosheet Arrays for Overall Water Splitting. J. Power Sources 2019, 427, 184–193. [Google Scholar] [CrossRef]
- Feng, Y.; Li, Z.; Li, S.; Yang, M.; Ma, R.; Wang, J. One Stone Two Birds: Vanadium Doping as Dual Roles in Self-Reduced Pt Clusters and Accelerated Water Splitting. J. Energy Chem. 2022, 66, 493–501. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, H.; Li, F.; She, W.; Wang, X.; Xu, L.; Jiao, H. Mo-Doped Ni2P Hollow Nanostructures: Highly Efficient and Durable Bifunctional Electrocatalysts for Alkaline Water Splitting. J. Mater. Chem. A 2019, 7, 7636–7643. [Google Scholar] [CrossRef]
- Du, X.; Su, H.; Zhang, X. Cr Doped-Co9S8 Nanoarrays as High-Efficiency Electrocatalysts for Water Splitting. J. Alloy. Compd. 2020, 824, 153965. [Google Scholar] [CrossRef]
- Khatun, S.; Roy, P. Cobalt Chromium Vanadium Layered Triple Hydroxides as an Efficient Oxygen Electrocatalyst for Alkaline Seawater Splitting. Chem. Commun. 2022, 58, 1104–1107. [Google Scholar] [CrossRef]
- Jo, S.; Kwon, J.H.; Cho, K.Y.; Kim, D.H.; Eom, K.S. Enhanced Activity and Stability of Co-Ni-P-B Catalyst for the Hydrogen Evolution Reaction via Predeposition of Co-Ni on a Cu Substrate. Catal. Today 2021, 359, 35–42. [Google Scholar] [CrossRef]
- Niu, Z.; Qiu, C.; Jiang, J.; Ai, L. Hierarchical CoP-FeP Branched Heterostructures for Highly Efficient Electrocatalytic Water Splitting. ACS Sustain. Chem. Eng. 2019, 7, 2335–2342. [Google Scholar] [CrossRef]
- Farai Kuchena, S.; Wang, Y. A Full Flexible NH4+ Ion Battery Based on the Concentrated Hydrogel Electrolyte for Enhanced Performance. Chem. A Eur. J. 2021, 27, 15450–15459. [Google Scholar] [CrossRef]
- Ülker, E. Hydrothermally Synthesized Cobalt Borophosphate as an Electrocatalyst for Water Oxidation in the PH Range from 7 to 14. ChemElectroChem 2019, 6, 3132–3138. [Google Scholar] [CrossRef]
- Li, W.; Zhao, Y.; Liu, Y.; Sun, M.; Waterhouse, G.I.N.; Huang, B.; Zhang, K.; Zhang, T.; Lu, S. Exploiting Ru-Induced Lattice Strain in CoRu Nanoalloys for Robust Bifunctional Hydrogen Production. Angew. Chem. Int. Ed. 2021, 60, 3290–3298. [Google Scholar] [CrossRef]
- Wang, F.; Zhu, J.; Liu, H. Urea Controlled Hydrothermal Synthesis of Ammonium Aluminum Carbonate Hydroxide Rods. AIP Adv. 2018, 8, 5–12. [Google Scholar] [CrossRef]
- Xuan, C.; Wang, J.; Xia, W.; Peng, Z.; Wu, Z.; Lei, W.; Xia, K.; Xin, H.L.; Wang, D. Porous Structured Ni-Fe-P Nanocubes Derived from a Prussian Blue Analogue as an Electrocatalyst for Efficient Overall Water Splitting. ACS Appl. Mater. Interfaces 2017, 9, 26134–26142. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, X.; Ge, L.; Peng, C.; Zhu, L.; Zou, W.; Chen, J.; Wu, Q.; Zhang, Y.; Huang, H.; et al. Accelerating Hydrogen Evolution in Ru-Doped FeCoP Nanoarrays with Lattice Distortion toward Highly Efficient Overall Water Splitting. Catal. Sci. Technol. 2020, 10, 8314–8324. [Google Scholar] [CrossRef]
- Li, S.; Zhang, G.; Tu, X.; Li, J. Polycrystalline CoP/CoP2 Structures for Efficient Full Water Splitting. ChemElectroChem 2018, 5, 701–707. [Google Scholar] [CrossRef]
- Kyesmen, P.I.; Nombona, N.; Diale, M. Heterojunction of Nanostructured α-Fe2O3/CuO for Enhancement of Photoelectrochemical Water Splitting. J. Alloys Compd. 2021, 863, 158724. [Google Scholar] [CrossRef]
- Maiti, A.; Srivastava, S.K. Ru-Doped CuO/MoS2 Nanostructures as Bifunctional Water-Splitting Electrocatalysts in Alkaline Media. ACS Appl. Nano Mater. 2021, 4, 7675–7685. [Google Scholar] [CrossRef]
- Han, L.; Xu, J.; Huang, Y.; Dong, W.; Jia, X. High-Performance Electrocatalyst of Vanadium-Iron Bimetal Organic Framework Arrays on Nickel Foam for Overall Water Splitting. Chin. Chem. Lett. 2021, 32, 2263–2268. [Google Scholar] [CrossRef]
- Jeung, Y.; Jung, H.; Kim, D.; Roh, H.; Lim, C.; Han, J.W.; Yong, K. 2D-Structured V-Doped Ni(Co,Fe) Phosphides with Enhanced Charge Transfer and Reactive Sites for Highly Efficient Overall Water Splitting Electrocatalysts. J. Mater. Chem. A 2021, 9, 12203–12213. [Google Scholar] [CrossRef]
- Yu, J.; Li, Q.; Li, Y.; Xu, C.Y.; Zhen, L.; Dravid, V.P.; Wu, J. Ternary Metal Phosphide with Triple-Layered Structure as a Low-Cost and Efficient Electrocatalyst for Bifunctional Water Splitting. Adv. Funct. Mater. 2016, 26, 7644–7651. [Google Scholar] [CrossRef]
- Sivula, K.; Zboril, R.; Le Formal, F.; Robert, R.; Weidenkaff, A.; Tucek, J.; Frydrych, J.; Grätzel, M. Photoelectrochemical Water Splitting with Mesoporous Hematite Prepared by a Solution-Based Colloidal Approach. J. Am. Chem. Soc. 2010, 132, 7436–7444. [Google Scholar] [CrossRef]
- Yao, Q.; Huang, B.; Zhang, N.; Sun, M.; Shao, Q.; Huang, X. Channel-Rich RuCu Nanosheets for PH-Universal Overall Water Splitting Electrocatalysis. Angew. Chem. 2019, 131, 14121–14126. [Google Scholar] [CrossRef]
- Kyesmen, P.I.; Nombona, N.; Diale, M. Modified Annealing Approach for Preparing Multi-Layered Hematite Thin Films for Photoelectrochemical Water Splitting. Mater. Res. Bull. 2020, 131, 110964. [Google Scholar] [CrossRef]
- Anantharaj, S.; Kundu, S.; Noda, S. Worrisome Exaggeration of Activity of Electrocatalysts Destined for Steady-State Water Electrolysis by Polarization Curves from Transient Techniques. J. Electrochem. Soc. 2022, 169, 014508. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, C.; Huang, H.; Li, J.; Zhang, X.; Li, Z.; Wei, H.; Chu, H. High-Density Nickel Phosphide Nanoparticles Loaded Reduced Graphene Oxide on Nickel Foam for Enhanced Alkaline and Neutral Water Splitting. Electrochim. Acta 2020, 362, 137172. [Google Scholar] [CrossRef]
- Sultan, S.; Ha, M.; Kim, D.Y.; Tiwari, J.N.; Myung, C.W.; Meena, A.; Shin, T.J.; Chae, K.H.; Kim, K.S. Superb Water Splitting Activity of the Electrocatalyst Fe3Co(PO4)4 Designed with Computation Aid. Nat. Commun. 2019, 10, 5195. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, J.; Chen, Y.; Wei, M.; Liu, X.; Li, X.; Wu, Q.; Feng, B.; Zhang, Y.; Yang, L. Regulation of the Morphology and Electrochemical Properties of Ni 0.85 Se via Fe Doping for Overall Water Splitting and Supercapacitors. CrystEngComm 2022, 24, 1704–1718. [Google Scholar] [CrossRef]
- Zhu, C.; Yin, Z.; Lai, W.; Sun, Y.; Liu, L.; Zhang, X.; Chen, Y.; Chou, S.L. Fe-Ni-Mo Nitride Porous Nanotubes for Full Water Splitting and Zn-Air Batteries. Adv. Energy Mater. 2018, 8, 1802327. [Google Scholar] [CrossRef]
- Jia, Y.; Zhang, L.; Gao, G.; Chen, H.; Wang, B.; Zhou, J.; Soo, M.T.; Hong, M.; Yan, X.; Qian, G.; et al. A Heterostructure Coupling of Exfoliated Ni–Fe Hydroxide Nanosheet and Defective Graphene as a Bifunctional Electrocatalyst for Overall Water Splitting. Adv. Mater. 2017, 29, 1700017. [Google Scholar] [CrossRef]
- Zou, Z.; Wang, X.; Huang, J.; Wu, Z.; Gao, F. An Fe-Doped Nickel Selenide Nanorod/Nanosheet Hierarchical Array for Efficient Overall Water Splitting. J. Mater. Chem. A 2019, 7, 2233–2241. [Google Scholar] [CrossRef]
- Yaseen, W.; Ullah, N.; Xie, M.; Yusuf, B.A.; Xu, Y.; Tong, C.; Xie, J. Ni-Fe-Co Based Mixed Metal/Metal-Oxides Nanoparticles Encapsulated in Ultrathin Carbon Nanosheets: A Bifunctional Electrocatalyst for Overall Water Splitting. Surf. Interfaces 2021, 26, 101361. [Google Scholar] [CrossRef]
- Li, M.; Wang, J.; Guo, X.; Li, J.; Huang, Y.; Geng, S.; Yu, Y.; Liu, Y.; Yang, W. Structural Engineering of Fe-Doped Ni2P Nanosheets Arrays for Enhancing Bifunctional Electrocatalysis towards Overall Water Splitting. Appl. Surf. Sci. 2021, 536, 147909. [Google Scholar] [CrossRef]
- Chen, W.; Qian, G.; Xu, Q.; Yu, C.; Yu, M.; Xia, Y.; Yin, S. Efficient Bifunctional Catalysts for Overall Water Splitting: Porous Fe-Mo Oxide Hybrid Nanorods. Nanoscale 2020, 12, 7116–7123. [Google Scholar] [CrossRef]
- Wang, K.; Sun, K.; Yu, T.; Liu, X.; Wang, G.X.; Jiang, L.; Xie, G. Facile Synthesis of Nanoporous Ni-Fe-P Bifunctional Catalysts with High Performance for Overall Water Splitting. J. Mater. Chem. A 2019, 7, 2518–2523. [Google Scholar] [CrossRef]
- He, Q.; Liu, H.; Tan, P.; Xie, J.; Si, S.; Pan, J. N-Fe-Cu Co-Doped Carbon Materials for Efficient Electrocatalytic Water Splitting. J. Solid State Chem. 2021, 299, 122179. [Google Scholar] [CrossRef]
- Lim, D.; Oh, E.; Lim, C.; Shim, S.E.; Baeck, S.H. Fe-Doped Ni3S2 Nanoneedles Directly Grown on Ni Foam as Highly Efficient Bifunctional Electrocatalysts for Alkaline Overall Water Splitting. Electrochim. Acta 2020, 361, 137080. [Google Scholar] [CrossRef]
- Li, W.; Chen, Y.; Yu, B.; Hu, Y.; Wang, X.; Yang, D. 3D Hollow Co-Fe-P Nanoframes Immobilized on N,P-Doped CNT as an Efficient Electrocatalyst for Overall Water Splitting. Nanoscale 2019, 11, 17031–17040. [Google Scholar] [CrossRef]
- Anantharaj, S.; Noda, S. Appropriate Use of Electrochemical Impedance Spectroscopy in Water Splitting Electrocatalysis. ChemElectroChem 2020, 7, 2297–2308. [Google Scholar] [CrossRef]
- Yu, F.; Zhou, H.; Huang, Y.; Sun, J.; Qin, F.; Bao, J.; Goddard, W.A.; Chen, S.; Ren, Z. High-Performance Bifunctional Porous Non-Noble Metal Phosphide Catalyst for Overall Water Splitting. Nat. Commun. 2018, 9, 1–9. [Google Scholar] [CrossRef]
- Chen, C.; Tuo, Y.; Lu, Q.; Lu, H.; Zhang, S.; Zhou, Y.; Zhang, J.; Liu, Z.; Kang, Z.; Feng, X.; et al. Hierarchical Trimetallic Co-Ni-Fe Oxides Derived from Core-Shell Structured Metal-Organic Frameworks for Highly Efficient Oxygen Evolution Reaction. Appl. Catal. B Environ. 2021, 287, 119953. [Google Scholar] [CrossRef]
- Yu, L.; Zhou, H.; Sun, J.; Qin, F.; Yu, F.; Bao, J.; Yu, Y.; Chen, S.; Ren, Z. Cu Nanowires Shelled with NiFe Layered Double Hydroxide Nanosheets as Bifunctional Electrocatalysts for Overall Water Splitting. Energy Environ. Sci. 2017, 10, 1820–1827. [Google Scholar] [CrossRef]
- Jiang, Y.; Lu, Y. Designing Transition-Metal-Boride-Based Electrocatalysts for Applications in Electrochemical Water Splitting. Nanoscale 2020, 12, 9327–9351. [Google Scholar] [CrossRef]
- Palma, V.; Vaiano, V.; Matarangolo, M.; Anello, G. Comparison of Pt/C Electrocatalyst Deposition Methods for PEM Fuel Cells. Chem. Eng. Trans. 2018, 70, 1525–1530. [Google Scholar] [CrossRef]
- Yu, H.; Quan, T.; Mei, S.; Kochovski, Z.; Huang, W.; Meng, H.; Lu, Y. Prompt Electrodeposition of Ni Nanodots on Ni Foam to Construct a High-Performance Water-Splitting Electrode: Efficient, Scalable, and Recyclable. Nano-Micro Lett. 2019, 11, 1–13. [Google Scholar] [CrossRef]
- Anantharaj, S.; Karthik, P.E.; Noda, S. The Significance of Properly Reporting Turnover Frequency in Electrocatalysis Research. Angew. Chemie - Int. Ed. 2021, 60, 23051–23067. [Google Scholar] [CrossRef] [PubMed]
- Han, N.; Yang, K.R.; Lu, Z.; Li, Y.; Xu, W.; Gao, T.; Cai, Z.; Zhang, Y.; Batista, V.S.; Liu, W.; et al. Nitrogen-Doped Tungsten Carbide Nanoarray as an Efficient Bifunctional Electrocatalyst for Water Splitting in Acid. Nat. Commun. 2018, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Gong, M.; Zhou, W.; Kenney, M.J.; Kapusta, R.; Cowley, S.; Wu, Y.; Lu, B.; Lin, M.C.; Wang, D.Y.; Yang, J.; et al. Blending Cr2O3 into a NiO-Ni Electrocatalyst for Sustained Water Splitting. Angew. Chemie Int. Ed. 2015, 54, 11989–11993. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, M.; Yang, G.; Song, W.; Zhong, W.; Wang, X.; Wang, M.; Sun, T.; Tang, Y. Heterogeneous Bimetallic Mo-NiPx/NiSy as a Highly Efficient Electrocatalyst for Robust Overall Water Splitting. Adv. Funct. Mater. 2021, 31, 2101532. [Google Scholar] [CrossRef]
- Ma, H.; Chen, Z.; Wang, Z.; Singh, C.V.; Jiang, Q. Interface Engineering of Co/CoMoN/NF Heterostructures for High-Performance Electrochemical Overall Water Splitting. Adv. Sci. 2022, 2105313, 2105313. [Google Scholar] [CrossRef]
- Wang, D.; Li, Q.; Han, C.; Lu, Q.; Xing, Z.; Yang, X. Atomic and Electronic Modulation of Self-Supported Nickel-Vanadium Layered Double Hydroxide to Accelerate Water Splitting Kinetics. Nat. Commun. 2019, 10, 3899. [Google Scholar] [CrossRef]
- Wang, P.; Qi, J.; Chen, X.; Li, C.; Li, W.; Wang, T.; Liang, C. Three-Dimensional Heterostructured NiCoP@NiMn-Layered Double Hydroxide Arrays Supported on Ni Foam as a Bifunctional Electrocatalyst for Overall Water Splitting. ACS Appl. Mater. Interfaces 2020, 12, 4385–4395. [Google Scholar] [CrossRef]
- Bai, X.; Ren, Z.; Du, S.; Meng, H.; Wu, J.; Xue, Y.; Zhao, X.; Fu, H. In-Situ Structure Reconstitution of NiCo2Px for Enhanced Electrochemical Water Oxidation. Sci. Bull. 2017, 62, 1510–1518. [Google Scholar] [CrossRef]
- Xu, H.; Fei, B.; Cai, G.; Ha, Y.; Liu, J.; Jia, H.; Zhang, J.; Liu, M.; Wu, R. Boronization-Induced Ultrathin 2D Nanosheets with Abundant Crystalline–Amorphous Phase Boundary Supported on Nickel Foam toward Efficient Water Splitting. Adv. Energy Mater. 2020, 10, 1902714. [Google Scholar] [CrossRef]
- Menezes, P.W.; Indra, A.; Das, C.; Walter, C.; Göbel, C.; Gutkin, V.; Schmeißer, D.; Driess, M. Uncovering the Nature of Active Species of Nickel Phosphide Catalysts in High-Performance Electrochemical Overall Water Splitting. ACS Catal. 2017, 7, 103–109. [Google Scholar] [CrossRef]
- Niu, J.; Yue, Y.; Yang, C.; Wang, Y.; Qin, J.; Zhang, X.; Wu, Z.S. Ultrarapid Synthesis Ni-Cu Bifunctional Electrocatalyst by Self-Etching Electrodeposition for High-Performance Water Splitting Reaction. Appl. Surf. Sci. 2021, 561, 150030. [Google Scholar] [CrossRef]
- Tang, C.; Cheng, N.; Pu, Z.; Xing, W.; Sun, X. NiSe Nanowire Film Supported on Nickel Foam: An Efficient and Stable 3D Bifunctional Electrode for Full Water Splitting. Angew. Chem. Int. Ed. 2015, 54, 9351–9355. [Google Scholar] [CrossRef]
- De Silva, U.; Masud, J.; Zhang, N.; Hong, Y.; Liyanage, W.P.R.; Asle Zaeem, M.; Nath, M. Nickel Telluride as a Bifunctional Electrocatalyst for Efficient Water Splitting in Alkaline Medium. J. Mater. Chem. A 2018, 6, 7608–7622. [Google Scholar] [CrossRef]
- Zhang, R.; Tang, C.; Kong, R.; Du, G.; Asiri, A.M.; Chen, L.; Sun, X. Al-Doped CoP Nanoarray: A Durable Water-Splitting Electrocatalyst with Superhigh Activity. Nanoscale 2017, 9, 4793–4800. [Google Scholar] [CrossRef]
- Kim, D.; Qin, X.; Yan, B.; Piao, Y. Sprout-Shaped Mo-Doped CoP with Maximized Hydrophilicity and Gas Bubble Release for High-Performance Water Splitting Catalyst. Chem. Eng. J. 2021, 408, 127331. [Google Scholar] [CrossRef]
- Hu, E.; Feng, Y.; Nai, J.; Zhao, D.; Hu, Y.; Lou, X.W. Construction of Hierarchical Ni-Co-P Hollow Nanobricks with Oriented Nanosheets for Efficient Overall Water Splitting. Energy Environ. Sci. 2018, 11, 872–880. [Google Scholar] [CrossRef]
- Ji, L.; Wang, J.; Teng, X.; Meyer, T.J.; Chen, Z. CoP Nanoframes as Bifunctional Electrocatalysts for Efficient Overall Water Splitting. ACS Catal. 2020, 10, 412–419. [Google Scholar] [CrossRef]
- Jiao, L.; Zhou, Y.X.; Jiang, H.L. Metal-Organic Framework-Based CoP/Reduced Graphene Oxide: High-Performance Bifunctional Electrocatalyst for Overall Water Splitting. Chem. Sci. 2016, 7, 1690–1695. [Google Scholar] [CrossRef] [Green Version]
- Sun, K.; Wang, K.; Yu, T.; Liu, X.; Wang, G.; Jiang, L.; Bu, Y.; Xie, G. High-Performance Fe–Co–P Alloy Catalysts by Electroless Deposition for Overall Water Splitting. Int. J. Hydrogen Energy 2019, 44, 1328–1335. [Google Scholar] [CrossRef]
- Ayom, G.E.; Khan, M.D.; Choi, J.; Gupta, R.K.; van Zyl, W.E.; Revaprasadu, N. Synergistically Enhanced Performance of Transition-Metal Doped Ni2P for Supercapacitance and Overall Water Splitting. Dalt. Trans. 2021, 50, 11821–11833. [Google Scholar] [CrossRef] [PubMed]
Electrocatalysts | Electrolyte Solution | Overpotential [V] at 50 mA/cm2 | Year | Reference |
---|---|---|---|---|
FeNiSe | 1 M KOH | 1.36 | 2022 | [55] |
V/FeBP | 1 M KOH | 1.48 | - | (This work) |
Ni-Fe-MoN NTs | 1 M KOH | 1.62 | 2018 | [56] |
NiFe LDH@DG10 | 1 M KOH | 1.65 | 2017 | [57] |
Fe-Ni5P4/NiFeOH-350 | 1 M KOH | 1.66 | 2021 | [9] |
Fe7.4%-NiSe | 1 M KOH | 1.68 | 2019 | [58] |
NFC@CNSs-700 | 1 M KOH | 1.70 | 2021 | [59] |
R-Fe-Ni2P | 1 M KOH | 1.75 | 2020 | [60] |
(FeO)2.(MoO2)3/MoO2 | 1 M KOH | 1.76 | 2020 | [61] |
Ni-Fe-P/NF0 | 1 M KOH | 1.77 | 2019 | [62] |
Fe-Cu@CN3 | 1 M KOH | 1.83 | 2021 | [63] |
Fe-Ni3 S2/NF | 1 M KOH | 1.84 | 2020 | [64] |
CoFeO NFs/NPCNT | 1 M KOH | 1.86 | 2019 | [65] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burse, S.; Kulkarni, R.; Mandavkar, R.; Habib, M.A.; Lin, S.; Chung, Y.-U.; Jeong, J.-H.; Lee, J. Vanadium-Doped FeBP Microsphere Croissant for Significantly Enhanced Bi-Functional HER and OER Electrocatalyst. Nanomaterials 2022, 12, 3283. https://doi.org/10.3390/nano12193283
Burse S, Kulkarni R, Mandavkar R, Habib MA, Lin S, Chung Y-U, Jeong J-H, Lee J. Vanadium-Doped FeBP Microsphere Croissant for Significantly Enhanced Bi-Functional HER and OER Electrocatalyst. Nanomaterials. 2022; 12(19):3283. https://doi.org/10.3390/nano12193283
Chicago/Turabian StyleBurse, Shalmali, Rakesh Kulkarni, Rutuja Mandavkar, Md Ahasan Habib, Shusen Lin, Young-Uk Chung, Jae-Hun Jeong, and Jihoon Lee. 2022. "Vanadium-Doped FeBP Microsphere Croissant for Significantly Enhanced Bi-Functional HER and OER Electrocatalyst" Nanomaterials 12, no. 19: 3283. https://doi.org/10.3390/nano12193283
APA StyleBurse, S., Kulkarni, R., Mandavkar, R., Habib, M. A., Lin, S., Chung, Y. -U., Jeong, J. -H., & Lee, J. (2022). Vanadium-Doped FeBP Microsphere Croissant for Significantly Enhanced Bi-Functional HER and OER Electrocatalyst. Nanomaterials, 12(19), 3283. https://doi.org/10.3390/nano12193283