Deposition of Chiral Heptahelicene Molecules on Ferromagnetic Co and Fe Thin-Film Substrates
Abstract
:1. Introduction
- Spin-selective transmission of charge carriers through various chiral molecules ranging from long DNA strands [8] and polymers [9] to helical molecules (e.g., helicene molecules) with down to a single winding [10] yielded substantial spin polarization values, for instance, exceeding 60% for photo-emitted electrons passing through monolayers (ML) of double-stranded DNA [11] or for the hole current through chiral methylbenzylammonium molecules within a layered organic–inorganic metal–halide hybrid semiconductor framework [12], both at room temperature (RT). This opens perspectives for the realization of a versatile, low-cost and energy-efficient carbon-based spintronics with reduced device size, operating at RT and not requiring ferromagnetic metals [2].
- The enantiospecific adsorption of various chiral molecules on ferromagnetic, perpendicularly magnetized substrates demonstrated a distinct approach to enantiomeric separations by providing a potentially generic, efficient, and cost-effective chromatographic method for enantioseparation, which does not require a specific separating column [7,13].
- Adsorbing a self-assembled ML of chiral molecules can switch the local magnetization of a ferromagnetic layer with perpendicular magnetic anisotropy without the need to apply an electrical current or an external magnetic field [14].
2. Materials and Methods
2.1. Sample Preparation
2.1.1. Heptahelicene on Cu(111)
2.1.2. Heptahelicene on Co/Cu(111)
2.1.3. Heptahelicene on Fe/W(110)
2.2. STM Measurements
3. Results
3.1. Heptahelicene on Cu(111)
3.2. Heptahelicene on Bilayer Co Nanoislands
3.3. Heptahelicene on Ultra-Thin Fe Films on W(110)
3.4. Spectroscopy of Molecules on Different Substrates
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Gaussian High-Pass Filter
Appendix B. Mosaic Measurements
References
- Ray, K.; Ananthavel, S.P.; Waldeck, D.H.; Naaman, R. Asymmetric Scattering of Polarized Electrons by Organized Organic Films of Chiral Molecules. Science 1999, 283, 814–816. [Google Scholar] [CrossRef] [PubMed]
- Naaman, R.; Waldeck, D.H. Chiral-induced spin selectivity effect. J. Phys. Chem. Lett. 2012, 3, 2178–2187. [Google Scholar] [CrossRef] [PubMed]
- Naaman, R.; Waldeck, D.H. Spintronics and Chirality: Spin Selectivity in Electron Transport Through Chiral Molecules. Annu. Rev. Phys. Chem. 2015, 66, 263–281. [Google Scholar] [CrossRef] [PubMed]
- Naaman, R.; Paltiel, Y.; Waldeck, D.H. Chiral molecules and the electron spin. Nat. Rev. Chem. 2019, 3, 250–260. [Google Scholar] [CrossRef]
- Aiello, C.D.; Abendroth, J.M.; Abbas, M.; Afanasev, A.; Agarwal, S.; Banerjee, A.S.; Beratan, D.N.; Belling, J.N.; Berche, B.; Botana, A.; et al. A Chirality-Based Quantum Leap. ACS Nano 2022, 16, 4989–5035. [Google Scholar] [CrossRef]
- Al-Bustami, H.; Bloom, B.P.; Ziv, A.; Goldring, S.; Yochelis, S.; Naaman, R.; Waldeck, D.H.; Paltiel, Y. Optical Multilevel Spin Bit Device Using Chiral Quantum Dots. Nano Lett. 2020, 20, 8675–8681. [Google Scholar] [CrossRef]
- Naaman, R.; Waldeck, D.H.; Paltiel, Y. Chiral molecules-ferromagnetic interfaces, an approach towards spin controlled interactions. Appl. Phys. Lett. 2019, 115, 133701. [Google Scholar] [CrossRef]
- Ray, S.G.; Daube, S.S.; Leitus, G.; Vager, Z.; Naaman, R. Chirality-induced spin-selective properties of self-assembled monolayers of DNA on gold. Phys. Rev. Lett. 2006, 96, 036101. [Google Scholar] [CrossRef]
- Mishra, S.; Mondal, A.K.; Smolinsky, E.Z.; Naaman, R.; Maeda, K.; Nishimura, T.; Taniguchi, T.; Yoshida, T.; Takayama, K.; Yashima, E. Spin Filtering Along Chiral Polymers. Angew. Chem. Int. Ed. 2020, 59, 14671–14676. [Google Scholar] [CrossRef]
- Kettner, M.; Maslyuk, V.V.; Nürenberg, D.; Seibel, J.; Gutierrez, R.; Cuniberti, G.; Ernst, K.H.; Zacharias, H. Chirality-Dependent Electron Spin Filtering by Molecular Monolayers of Helicenes. J. Phys. Chem. Lett. 2018, 9, 2025–2030. [Google Scholar] [CrossRef] [Green Version]
- Göhler, B.; Hamelbeck, V.; Markus, T.Z.; Kettner, M.; Hanne, G.F.; Vager, Z.; Naaman, R.; Zacharias, H. Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA. Science 2011, 331, 894–897. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Zhai, Y.; Lu, H.; Pan, X.; Xiao, C.; Gaulding, E.A.; Harvey, S.P.; Berry, J.J.; Vardeny, Z.V.; Luther, J.M.; et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 2021, 371, 1129–1133. [Google Scholar] [CrossRef] [PubMed]
- Banerjee-Ghosh, K.; Dor, O.B.; Tassinari, F.; Capua, E.; Yochelis, S.; Capua, A.; Yang, S.H.; Parkin, S.S.; Sarkar, S.; Kronik, L.; et al. Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates. Science 2018, 360, 1331–1334. [Google Scholar] [CrossRef] [PubMed]
- Ben Dor, O.; Yochelis, S.; Radko, A.; Vankayala, K.; Capua, E.; Capua, A.; Yang, S.H.; Baczewski, L.T.; Parkin, S.S.P.; Naaman, R.; et al. Magnetization switching in ferromagnets by adsorbed chiral molecules without current or external magnetic field. Nat. Commun. 2017, 8, 14567. [Google Scholar] [CrossRef]
- Fransson, J. Chirality-Induced Spin Selectivity: The Role of Electron Correlations. J. Phys. Chem. Lett. 2019, 10, 7126–7132. [Google Scholar] [CrossRef]
- Michaeli, K.; Naaman, R. Origin of Spin-Dependent Tunneling Through Chiral Molecules. J. Phys. Chem. C 2019, 123, 17043–17048. [Google Scholar] [CrossRef]
- Ghazaryan, A.; Paltiel, Y.; Lemeshko, M. Analytic Model of Chiral-Induced Spin Selectivity. J. Phys. Chem. C 2020, 124, 11716–11721. [Google Scholar] [CrossRef]
- Yeganeh, S.; Ratner, M.A.; Medina, E.; Mujica, V. Chiral electron transport: Scattering through helical potentials. J. Chem. Phys. 2009, 131, 014707. [Google Scholar] [CrossRef]
- Geyer, M.; Gutierrez, R.; Mujica, V.; Cuniberti, G. Chirality-Induced Spin Selectivity in a Coarse-Grained Tight-Binding Model for Helicene. J. Phys. Chem. C 2019, 123, 27230–27241. [Google Scholar] [CrossRef]
- Huisman, K.H.; Thijssen, J.M. CISS Effect: A Magnetoresistance through Inelastic Scattering. J. Phys. Chem. C 2021, 125, 23364–23369. [Google Scholar] [CrossRef]
- Kiran, V.; Mathew, S.P.; Cohen, S.R.; Hernández Delgado, I.; Lacour, J.; Naaman, R. Helicenes—A New Class of Organic Spin Filter. Adv. Mater. 2016, 28, 1957–1962. [Google Scholar] [CrossRef] [PubMed]
- Pan, T.R.; Guo, A.M.; Sun, Q.F. Spin-polarized electron transport through helicene molecular junctions. Phys. Rev. B 2016, 94, 235448. [Google Scholar] [CrossRef]
- Fasel, R.; Cossy, A.; Ernst, K.H.; Baumberger, F.; Greber, T.; Osterwalder, J. Orientation of chiral heptahelicene C30H18 on copper surfaces: An x-ray photoelectron diffraction study. J. Chem. Phys. 2001, 115, 1020–1027. [Google Scholar] [CrossRef]
- Seibel, J.; Parschau, M.; Ernst, K.H. From Homochiral Clusters to Racemate Crystals: Viable Nuclei in 2D Chiral Crystallization. J. Am. Chem. Soc. 2015, 137, 7970–7973. [Google Scholar] [CrossRef]
- Ernst, K.H.; Baumann, S.; Lutz, C.P.; Seibel, J.; Zoppi, L.; Heinrich, A.J. Pasteurs Experiment Performed at the Nanoscale: Manual Separation of Chiral Molecules, One by One. Nano Lett. 2015, 15, 5388–5392. [Google Scholar] [CrossRef]
- Ernst, K.H. Stereochemical Recognition of Helicenes on Metal Surfaces. Acc. Chem. Res. 2016, 49, 1182–1190. [Google Scholar] [CrossRef]
- Fasel, R.; Parschau, M.; Ernst, K.H. Amplification of chirality in two-dimensional enantiomorphous lattices. Nature 2006, 439, 449–452. [Google Scholar] [CrossRef]
- Ernst, K.H.; Kuster, Y.; Fasel, R.; McFadden, C.F.; Ellerbeck, U. Adsorption of helical aromatic molecules: Heptahelicene on Ni(111). Surf. Sci. 2003, 530, 195–202. [Google Scholar] [CrossRef]
- Fahrendorf, S.; Matthes, F.; Bürgler, D.E.; Schneider, C.M.; Atodiresei, N.; Caciuc, V.; Blügel, S.; Besson, C.; Kögerler, P. Structural integrity of single bis(phthalocyaninato)-neodymium(iii) molecules on metal surfaces with different reactivity. Spin 2014, 4, 144007. [Google Scholar] [CrossRef]
- Schleicher, S.; Borca, B.; Rawson, J.; Matthes, F.; Bürgler, D.E.; Kögerler, P.; Schneider, C.M. Ultra-High Vacuum Deposition of Pyrene Molecules on Metal Surfaces. Phys. Stat. Sol. B 2018, 255, 1800235. [Google Scholar] [CrossRef] [Green Version]
- De La Figuera, J.; Prieto, J.E.; Ocal, C.; Miranda, R. Scanning-tunneling-microscopy study of the growth of cobalt on Cu(111). Phys. Rev. B 1993, 47, 13043–13046. [Google Scholar] [CrossRef] [PubMed]
- Bode, M.; Krause, S.; Berbil-Bautista, L.; Heinze, S.; Wiesendanger, R. On the preparation and electronic properties of clean W(110) surfaces. Surf. Sci. 2007, 601, 3308–3314. [Google Scholar] [CrossRef]
- Pietzsch, O.; Kubetzka, A.; Bode, M.; Wiesendanger, R. Spin-Polarized Scanning Tunneling Spectroscopy of Nanoscale Cobalt Islands on Cu(111). Phys. Rev. Lett. 2004, 92, 057202. [Google Scholar] [CrossRef] [PubMed]
- Pietzsch, O.; Okatov, S.; Kubetzka, A.; Bode, M.; Heinze, S.; Lichtenstein, A.; Wiesendanger, R. Spin-Resolved Electronic Structure of Nanoscale Cobalt Islands on Cu(111). Phys. Rev. Lett. 2006, 96, 237203. [Google Scholar] [CrossRef]
- Negulyaev, N.N.; Stepanyuk, V.S.; Bruno, P.; Diekhöner, L.; Wahl, P.; Kern, K. Bilayer growth of nanoscale Co islands on Cu(111). Phys. Rev. B 2008, 77, 125437. [Google Scholar] [CrossRef]
- Oka, H.; Ignatiev, P.A.; Wedekind, S.; Rodary, G.; Niebergall, L.; Stepanyuk, V.S.; Sander, D.; Kirschner, J. Spin-Dependent Quantum Interference Within a Single Magnetic Nanostructure. Science 2010, 327, 843–846. [Google Scholar] [CrossRef] [PubMed]
- Esat, T.; Friedrich, R.; Matthes, F.; Caciuc, V.; Atodiresei, N.; Blügel, S.; Bürgler, D.E.; Tautz, F.S.; Schneider, C.M. Quantum interference effects in molecular spin hybrids. Phys. Rev. B 2017, 95, 094409. [Google Scholar] [CrossRef]
- Alkemper, U.; Carbone, C.; Vescovo, E.; Eberhardt, W.; Rader, O.; Gudat, W. Exchange-split electronic states of ultrathin Co layers on Cu(111). Phys. Rev. B 1994, 50, 17496–17501. [Google Scholar] [CrossRef]
- Metzelaars, M.; Schleicher, S.; Hattori, T.; Borca, B.; Matthes, F.; Sanz, S.; Bürgler, D.E.; Rawson, J.; Schneider, C.M.; Kögerler, P. Cyclophane with eclipsed pyrene units enables construction of spin interfaces with chemical accuracy. Chem. Sci. 2021, 12, 8430–8437. [Google Scholar] [CrossRef]
- Jia, X.; An, W. Adsorption of Monocyclic Aromatics on Transition Metal Surfaces: Insight into Variation of Binding Strength from First-Principles. J. Phys. Chem. C 2018, 122, 21897–21909. [Google Scholar] [CrossRef]
- Bethge, H.; Heuer, D.; Jensen, C.; Reshöft, K.; Köhler, U. Misfit-related effects in the epitaxial growth of iron on W(110). Surf. Sci. 1995, 331-333, 878–884. [Google Scholar] [CrossRef]
- Pietzsch, O.; Kubetzka, A.; Bode, M.; Wiesendanger, R. Real-Space Observation of Dipolar Antiferromagnetism in Magnetic Nanowires by Spin-Polarized Scanning Tunneling Spectroscopy. Phys. Rev. Lett. 2000, 84, 5212–5215. [Google Scholar] [CrossRef] [PubMed]
- Kubetzka, A.; Pietzsch, O.; Bode, M.; Wiesendanger, R. Magnetism of nanoscale Fe islands studied by spin-polarized scanning tunneling spectroscopy. Phys. Rev. B 2001, 63, 140407. [Google Scholar] [CrossRef]
- Kubetzka, A.; Bode, M.; Pietzsch, O.; Wiesendanger, R. Spin-Polarized Scanning Tunneling Microscopy with Antiferromagnetic Probe Tips. Phys. Rev. Lett. 2002, 88, 4. [Google Scholar] [CrossRef]
- Pratzer, M.; Elmers, H.J.; Bode, M.; Pietzsch, O.; Kubetzka, A.; Wiesendanger, R. Atomic-Scale Magnetic Domain Walls in Quasi-One-Dimensional Fe Nanostripes. Phys. Rev. Lett. 2001, 87, 127201–127204. [Google Scholar] [CrossRef]
- Bode, M.; Heinze, S.; Kubetzka, A.; Pietzsch, O.; Nie, X.; Bihlmayer, G.; Blügel, S.; Wiesendanger, R. Magnetization-Direction-Dependent Local Electronic Structure Probed by Scanning Tunneling Spectroscopy. Phys. Rev. Lett. 2002, 89, 237205. [Google Scholar] [CrossRef]
- Von Bergmann, K.; Menzel, M.; Serrate, D.; Schröder, Y.Y.; Ferriani, P.; Kubetzka, A.; Wiesendanger, R.; Heinze, S. Tunneling anisotropic magnetoresistance on the atomic scale. Phys. Rev. B 2012, 86, 134422. [Google Scholar] [CrossRef]
- Heß, V.; Friedrich, R.; Matthes, F.; Caciuc, V.; Atodiresei, N.; Bürgler, D.E.; Blügel, S.; Schneider, C.M. Magnetic subunits within a single molecule-surface hybrid. New J. Phys. 2017, 19. [Google Scholar] [CrossRef]
- Sicot, M.; Kurnosikov, O.; Swagten, H.J.; Koopmans, B. Hydrogen superstructures on Co nanoislands and Cu(111). Surf. Sci. 2008, 602, 3667–3673. [Google Scholar] [CrossRef]
- Schlenhoff, A.; Krause, S.; Herzog, G.; Wiesendanger, R. Bulk Cr tips with full spatial magnetic sensitivity for spin-polarized scanning tunneling microscopy. Appl. Phys. Lett. 2010, 97, 083104. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Safari, M.R.; Matthes, F.; Ernst, K.-H.; Bürgler, D.E.; Schneider, C.M. Deposition of Chiral Heptahelicene Molecules on Ferromagnetic Co and Fe Thin-Film Substrates. Nanomaterials 2022, 12, 3281. https://doi.org/10.3390/nano12193281
Safari MR, Matthes F, Ernst K-H, Bürgler DE, Schneider CM. Deposition of Chiral Heptahelicene Molecules on Ferromagnetic Co and Fe Thin-Film Substrates. Nanomaterials. 2022; 12(19):3281. https://doi.org/10.3390/nano12193281
Chicago/Turabian StyleSafari, Mohammad Reza, Frank Matthes, Karl-Heinz Ernst, Daniel E. Bürgler, and Claus M. Schneider. 2022. "Deposition of Chiral Heptahelicene Molecules on Ferromagnetic Co and Fe Thin-Film Substrates" Nanomaterials 12, no. 19: 3281. https://doi.org/10.3390/nano12193281
APA StyleSafari, M. R., Matthes, F., Ernst, K. -H., Bürgler, D. E., & Schneider, C. M. (2022). Deposition of Chiral Heptahelicene Molecules on Ferromagnetic Co and Fe Thin-Film Substrates. Nanomaterials, 12(19), 3281. https://doi.org/10.3390/nano12193281