Development and Applications of Embedded Passives and Interconnects Employing Nanomaterials
Abstract
:1. Introduction
2. Embedded Capacitors
High k Nanomaterials for Embedded Capacitors
3. Ferroelectric Ceramic–Polymer Composites
3.1. Conductive/Metallic Nanoparticles-Polymer Composites
3.2. Three Phase Nanocomposites
3.2.1. Use of High k Polymer Matrix
3.2.2. Use of Surface Modification
3.2.3. Use of Core-Shell Structured Fillers
3.3. Embedded Resistors
3.4. Cermets
3.5. Metal Alloys
3.6. Carbon-Based Composites
3.7. Embedded Inductors
4. Alloy-Based Nanomaterials for Inductor Cores
4.1. Iron-Based Alloys
4.2. Cobalt-Based Cores
4.3. Iron-Cobalt-Based Cores
4.4. Ferrite Nanomaterials for Inductor Cores
4.5. Novel Nanomaterials for Inductor Cores
5. Nanomaterials for Interconnect Technology
5.1. Nanoparticle-Based Lead-Free Solder
5.2. Electrically Conductive Adhesives
6. Isotropically Conductive Adhesives (ICA)
6.1. ICAs with Silver Nanowires
6.2. ICAs with Silver Nanoparticles
6.3. ICAs with Carbon Nanotubes (CNTs)
7. Anisotropic Conductive Adhesives/Anisotropic Conductive Films (ACA/ACF)
Nonconductive Adhesives (NCA)
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmad, N.; Bhatnagar, S.; Ali, S.S.; Dutta, R. Phytofabrication of bioinduced silver nanoparticles for biomedical applications. Int. J. Nanomed. 2015, 10, 7019. [Google Scholar]
- Rogers, J.A.; Someya, T.; Huang, Y. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607. [Google Scholar] [CrossRef]
- Wang, G.L.; Moeen, M.; Abedin, A.; Kolahdouz, M.; Luo, J.; Qin, C.L.; Zhu, H.L.; Yan, J.; Yin, H.Z.; Li, J.F.; et al. Optimization of SiGe selective epitaxy for source/drain engineering in 22 nm node complementary metal-oxide semiconductor (CMOS). J. Appl. Phys. 2013, 114, 123511. [Google Scholar] [CrossRef]
- Woodgate, J.M. 5—Conductors and Insulators, Passive Components, Printed Circuit Boards. In TV and Video Engineer’s Reference Book; Jackson, K.G., Townsend, G.B., Eds.; Butterworth-Heinemann: Oxford, UK, 1991; pp. 5/1–5/11. [Google Scholar]
- Yan, L.; Lopez, C.M.; Shrestha, R.P.; Irene, E.A.; Suvorova, A.A.; Saunders, M. Magnesium oxide as a candidate high-κ gate dielectric. Appl. Phys. Lett. 2006, 88, 142901. [Google Scholar] [CrossRef]
- Ranjan, S.; Dasgupta, N.; Lichtfouse, E. Nanoscience in Food and Agriculture; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Waldrop, M.M. The chips are down for Moore’s law. Nat. News 2016, 530, 144. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.E. Nanopackaging: Nanotechnologies and electronics packaging. In Nanopackaging; Springer: Cham, Switzerland, 2018; pp. 1–44. [Google Scholar]
- Gregorio, R.; Cestari, M.; Bernardino, F. Dielectric behaviour of thin films of β-PVDF/PZT and β-PVDF/BaTiO3 composites. J. Mater. Sci. 1996, 31, 2925–2930. [Google Scholar] [CrossRef]
- Tohge, N.; Takahashi, S.; Minami, T. Preparation of PbZrO3–PbTiO3 ferroelectric thin films by the sol–gel process. J. Am. Ceram. Soc. 1991, 74, 67–71. [Google Scholar] [CrossRef]
- Cho, S.-D.; Lee, J.-Y.; Hyun, J.-G.; Paik, K.-W. Study on epoxy/BaTiO3 composite embedded capacitor films (ECFs) for organic substrate applications. Mater. Sci. Eng. B 2004, 110, 233–239. [Google Scholar] [CrossRef]
- Rao, Y.; Wong, C. Material characterization of a high-dielectric-constant polymer–ceramic composite for embedded capacitor for RF applications. J. Appl. Polym. Sci. 2004, 92, 2228–2231. [Google Scholar] [CrossRef]
- Dang, Z.-M.; Nan, C.-W.; Xie, D.; Zhang, Y.-H.; Tjong, S. Dielectric behavior and dependence of percolation threshold on the conductivity of fillers in polymer-semiconductor composites. Appl. Phys. Lett. 2004, 85, 97–99. [Google Scholar] [CrossRef]
- Pleşa, I.; Noţingher, P.V.; Schlögl, S.; Sumereder, C.; Muhr, M. Properties of Polymer Composites Used in High-Voltage Applications. Polymers 2016, 8, 173. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Kozako, M.; Fuse, N.; Ohki, Y. Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 669–681. [Google Scholar] [CrossRef]
- Wurm, F.R.; Weiss, C.K. Nanoparticles from renewable polymers. Front. Chem. 2014, 2, 49. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Liu, C.; Guo, J.Z. Polymer-Based Multifunctional Nanocomposites and Their Applications, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Luo, S.; Sun, R.; Zhang, J.; Yu, S.; Du, R.; Zhang, Z. Synthesis and characterization of Nano BaTiO3/epoxy composites for embedded capacitors. In Proceedings of the 2009 International Conference on Electronic Packaging Technology & High Density Packaging, Beijing, China, 10–13 August 2009; pp. 856–859. [Google Scholar]
- Das, R.N.; Lauffer, J.M.; Markovich, V.R. Fabrication, integration and reliability of nanocomposite based embedded capacitors in microelectronics packaging. J. Mater. Chem. 2008, 18, 537–544. [Google Scholar] [CrossRef]
- Das, R.N.; Egitto, F.D.; Lauffer, J.M.; Markovich, V.R. Laser micromachining of nanocomposite-based flexible embedded capacitors. In Proceedings of the 2007 Proceedings 57th Electronic Components and Technology Conference, Sparks, NV, USA, 29 May–1 June 2007; pp. 435–441. [Google Scholar]
- Hanemann, T.; Gesswein, H.; Schumacher, B. Development of new polymer–BaTiO3-composites with improved permittivity for embedded capacitors. Microsyst. Technol. 2011, 17, 195–201. [Google Scholar] [CrossRef]
- Xu, J.; Moon, K.-S.; Pramanik, P.; Bhattacharya, S.; Wong, C. Optimization of epoxy-barium titanate nanocomposites for high performance embedded capacitor components. IEEE Trans. Compon. Packag. Technol. 2007, 30, 248–253. [Google Scholar] [CrossRef]
- Osada, M.; Sasaki, T. New dielectric nanomaterials fabricated from nanosheet technique. ECS Trans. 2012, 45, 3. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, F.; Luo, S.; Chang, W.; Yue, J.; Wang, C.-H. Recent advances in rational design of polymer nanocomposite dielectrics for energy storage. Nano Energy 2020, 74, 104844. [Google Scholar] [CrossRef]
- Huang, Y.; Kormakov, S.; He, X.; Gao, X.; Zheng, X.; Liu, Y.; Sun, J.; Wu, D. Conductive polymer composites from renewable resources: An overview of preparation, properties, and applications. Polymers 2019, 11, 187. [Google Scholar] [CrossRef] [PubMed]
- Alemour, B.; Badran, O.; Hassan, M.R. A Review of using conductive composite materials in solving lightening strike and ice accumulation problems in aviation. J. Aerosp. Technol. Manag. 2019, 11, e1919. [Google Scholar] [CrossRef]
- Friedrich, K. Polymer composites for tribological applications. Adv. Ind. Eng. Polym. Res. 2018, 1, 3–39. [Google Scholar] [CrossRef]
- Rao, Y.; Wong, C. A novel ultra high dielectric constant epoxy silver composite for embedded capacitor application. In Proceedings of the 8th International Advanced Packaging Materials Symposium (Cat. No. 02TH8617), Stone Mountain, GA, USA, 3–6 March 2002; pp. 243–248. [Google Scholar]
- Qi, L.; Lee, B.I.; Chen, S.; Samuels, W.D.; Exarhos, G.J. High-dielectric-constant silver–epoxy composites as embedded dielectrics. Adv. Mater. 2005, 17, 1777–1781. [Google Scholar] [CrossRef]
- Lu, J.; Moon, K.-S.; Xu, J.; Wong, C. Synthesis and dielectric properties of novel high-K polymer composites containing in-situ formed silver nanoparticles for embedded capacitor applications. J. Mater. Chem. 2006, 16, 1543–1548. [Google Scholar] [CrossRef]
- Qi, L.; Lee, B.I.; Samuels, W.D.; Exarhos, G.J.; Parler, S.G., Jr. Three-phase percolative silver–BaTiO3–epoxy nanocomposites with high dielectric constants. J. Appl. Polym. Sci. 2006, 102, 967–971. [Google Scholar] [CrossRef]
- George, S.; Sebastian, M.T. Three-phase polymer–ceramic–metal composite for embedded capacitor applications. Compos. Sci. Technol. 2009, 69, 1298–1302. [Google Scholar] [CrossRef]
- Lu, J.; Moon, K.-S.; Wong, C. Silver/polymer nanocomposite as a high-k polymer matrix for dielectric composites with improved dielectric performance. J. Mater. Chem. 2008, 18, 4821–4826. [Google Scholar] [CrossRef]
- Li, G.; Yu, S.; Sun, R.; Lu, D. Clean and in-situ synthesis of copper–epoxy nanocomposite as a matrix for dielectric composites with improved dielectric performance. Compos. Sci. Technol. 2015, 110, 95–102. [Google Scholar] [CrossRef]
- Ren, H.; Tang, S.; Syed, J.A.; Meng, X. Incorporation of silver nanoparticles coated with mercaptosuccinic acid/poly (ethylene glycol) copolymer into epoxy for enhancement of dielectric properties. Mater. Chem. Phys. 2012, 137, 673–680. [Google Scholar] [CrossRef]
- Luo, S.; Yu, S.; Sun, R.; Wong, C.-P. Nano Ag-deposited BaTiO3 hybrid particles as fillers for polymeric dielectric composites: Toward high dielectric constant and suppressed loss. ACS Appl. Mater. Interfaces 2014, 6, 176–182. [Google Scholar] [CrossRef]
- Xu, J.; Wong, C. Low-loss percolative dielectric composite. Appl. Phys. Lett. 2005, 87, 082907. [Google Scholar] [CrossRef]
- da Silva, A.B.; Arjmand, M.; Sundararaj, U.; Bretas, R.E.S. Novel composites of copper nanowire/PVDF with superior dielectric properties. Polymer 2014, 55, 226–234. [Google Scholar] [CrossRef]
- Shen, Y.; Lin, Y.; Li, M.; Nan, C.W. High dielectric performance of polymer composite films induced by a percolating interparticle barrier layer. Adv. Mater. 2007, 19, 1418–1422. [Google Scholar] [CrossRef]
- Oldfield, G.; Ung, T.; Mulvaney, P. Au@ SnO2 core–shell nanocapacitors. Adv. Mater. 2000, 12, 1519–1522. [Google Scholar] [CrossRef]
- Shen, Y.; Lin, Y.; Nan, C.W. Interfacial effect on dielectric properties of polymer nanocomposites filled with core/shell-structured particles. Adv. Funct. Mater. 2007, 17, 2405–2410. [Google Scholar] [CrossRef]
- Balasubramanian, B.; Kraemer, K.L.; Reding, N.A.; Skomski, R.; Ducharme, S.; Sellmyer, D.J. Synthesis of monodisperse TiO2− paraffin core− shell nanoparticles for improved dielectric properties. ACS Nano 2010, 4, 1893–1900. [Google Scholar] [CrossRef]
- Ekanath, D.M.; Badi, N.; Bensaoula, A. Modeling and Simulation of Artificial Core-Shell Based Nanodielectrics for Electrostatic Capacitors Applications. In Proceedings of the Boston COMSOL Multiphysics Conference 2011, Boston, MA, USA, 13–15 October 2011. [Google Scholar]
- Wang, D.; Huang, M.; Zha, J.-W.; Zhao, J.; Dang, Z.-M.; Cheng, Z. Dielectric properties of polystyrene based composites filled with core-shell BaTiO3/polystyrene hybrid nanoparticles. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 1438–1445. [Google Scholar] [CrossRef]
- Guo, Q.; Xue, Q.; Sun, J.; Dong, M.; Xia, F.; Zhang, Z. Gigantic enhancement in the dielectric properties of polymer-based composites using core/shell MWCNT/amorphous carbon nanohybrids. Nanoscale 2015, 7, 3660–3667. [Google Scholar] [CrossRef]
- Xie, L.; Huang, X.; Huang, Y.; Yang, K.; Jiang, P. Core-shell structured hyperbranched aromatic polyamide/BaTiO3 hybrid filler for poly (vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) nanocomposites with the dielectric constant comparable to that of percolative composites. ACS Appl. Mater. Interfaces 2013, 5, 1747–1756. [Google Scholar] [CrossRef] [PubMed]
- Sandborn, P.; Etienne, B.; Subramanian, G. Application-specific economic analysis of integral passives in printed circuit boards. Electron. Packag. Manuf. IEEE Trans. 2001, 24, 203–213. [Google Scholar] [CrossRef]
- Ju, C.-W.; Lee, S.-P.; Lee, Y.-M.; Hyun, S.-B.; Park, S.; Song, M.-K. Embedded Passive Components in MCM-D for RF Applications; IEEE: Piscataway, NJ, USA, 2000; pp. 211–214. [Google Scholar]
- Codreanu, N.; Ionescu, C.; Svasta, P.; Golumbeanu, V. Advanced methods for electromagnetic investigation of PCB/PWB layouts. In Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies III; SPIE: Bellingham, WA, USA, 2007; p. 663513. [Google Scholar]
- Bhattacharya, S.K.; Tummala, R.R. Next generation integral passives: Materials, processes, and integration of resistors and capacitors on PWB substrates. J. Mater. Sci. Mater. Electron. 2000, 11, 253–268. [Google Scholar] [CrossRef]
- Zandman, F.; Szwarc, J. Non-Linearity of Resistance/Temperature Characteristic: Its Influence on Performance of Precision Resistors. Vishay Precis. Group Tech. Rep 2013, 108, 1–10. [Google Scholar]
- Marin, B.C.; Root, S.E.; Urbina, A.D.; Aklile, E.; Miller, R.; Zaretski, A.V.; Lipomi, D.J. Graphene–metal composite sensors with near-zero temperature coefficient of resistance. ACS Omega 2017, 2, 626–630. [Google Scholar] [CrossRef] [PubMed]
- Maxfield, C.M. Chapter 18—Printed Circuit Boards (PCBs). In Bebop to the Boolean Boogie (Third Edition); Maxfield, C.M., Ed.; Newnes: Boston, MA, USA, 2009; pp. 251–276. [Google Scholar]
- Zhao, G.; Huang, X.; Tang, Z.; Huang, Q.; Niu, F.; Wang, X. Polymer-based nanocomposites for heavy metal ions removal from aqueous solution: A review. Polym. Chem. 2018, 9, 3562–3582. [Google Scholar] [CrossRef]
- Lim, S.-K.; Na, S.-H.; Park, E.-M.; Kim, J.-S.; Suh, S.-J. Electrical and structural properties of a Co-sputtered SiO2-Pt composite thin film for an embedded resistor. J. Korean Phys. Soc. 2012, 61, 1056–1059. [Google Scholar] [CrossRef]
- Park, I.-S.; Park, S.-Y.; Jeong, G.-H.; Na, S.-M.; Suh, S.-J. Fabrication of Ta3N5–Ag nanocomposite thin films with high resistivity and near-zero temperature coefficient of resistance. Thin Solid Film. 2008, 516, 5409–5413. [Google Scholar] [CrossRef]
- Felmetsger, V.V. Microstructure and temperature coefficient of resistance of thin cermet resistor films deposited from CrSi2–Cr–SiC targets by S-gun magnetron. J. Vac. Sci. Technol. A 2010, 28, 33–40. [Google Scholar] [CrossRef]
- Liu, X.-S.; Cheng, F.-X.; Wang, J.-Q.; Song, W.-B.; Yuan, B.-H.; Liang, E.-J. The control of thermal expansion and impedance of Al–Zr2 (WO4)(PO4)2 nano-cermets for near-zero-strain Al alloy and fine electrical components. J. Alloys Compd. 2013, 553, 1–7. [Google Scholar] [CrossRef]
- Nash, C.; Fenton, J.; Constantino, N.; Warburton, P. Compact chromium oxide thin film resistors for use in nanoscale quantum circuits. J. Appl. Phys. 2014, 116, 224501. [Google Scholar] [CrossRef]
- Wang, J.; Clouser, S. Thin film embedded resistors. In Proceedings of the IPC Expo 2001, Anaheim, CA, USA, 1–5 April 2001; p. S08-01. [Google Scholar]
- Andziulis, A.; Andziuliene, B.; Vaupsas, J.; Zadvydas, M. High stability nano-multilayer resistive films. Surf. Coat. Technol. 2006, 200, 6212–6217. [Google Scholar] [CrossRef]
- Coates, K.; Chien, C.-P.; Hsiao, Y.-Y.; Kovach, D.; Tang, C.-H.; Tanielian, M. Development of thin film resistors for use in multichip modules. In Proceedings of the 1998 International Conference on Multichip Modules and High Density Packaging (Cat. No. 98EX154), Denver, CO, USA, 15–17 April 1998; pp. 490–495. [Google Scholar]
- Shibuya, A.; Matsui, K.; Takahashi, K.; Kawatani, A. Embedded TiNxOy thin-film resistors in a build-up CSP for 10 Gbps optical transmitter and receiver modules. In Proceedings of the 51st Electronic Components and Technology Conference (Cat. No. 01CH37220), Orlando, FL, USA, 29 May–1 June 2001; pp. 847–851. [Google Scholar]
- Martin, C.; Sandler, J.; Windle, A.; Schwarz, M.-K.; Bauhofer, W.; Schulte, K.; Shaffer, M. Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites. Polymer 2005, 46, 877–886. [Google Scholar] [CrossRef]
- Prasse, T.; Cavaille, J.-Y.; Bauhofer, W. Electric anisotropy of carbon nanofibre/epoxy resin composites due to electric field induced alignment. Compos. Sci. Technol. 2003, 63, 1835–1841. [Google Scholar] [CrossRef]
- Prasse, T.; Flandin, L.; Schulte, K.; Bauhofer, W. In situ observation of electric field induced agglomeration of carbon black in epoxy resin. Appl. Phys. Lett. 1998, 72, 2903–2905. [Google Scholar] [CrossRef] [Green Version]
- Bajwa, R.; Yapici, M.K. Integrated On-Chip Transformers: Recent Progress in the Design, Layout, Modeling and Fabrication. Sensors 2019, 19, 3535. [Google Scholar] [CrossRef]
- Kobe, O.; Chuma, J.; Jamisola, R.; Chose, M. A review on quality factor enhanced on-chip microwave planar resonators. Eng. Sci. Technol. Int. J. 2016, 20. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Baba, M.; Suezawa, K.; Moizumi, T.; Arai, K.; Haga, A.; Shimada, Y.; Tanabe, S.; Itoh, K. Improved RF integrated magnetic thin-film inductors by means of micro slits and surface planarization techniques. IEEE Trans. Magn. 2000, 36, 3495–3498. [Google Scholar] [CrossRef]
- Bräuer, G. 4.03—Magnetron Sputtering. In Comprehensive Materials Processing; Hashmi, S., Batalha, G.F., Van Tyne, C.J., Yilbas, B., Eds.; Elsevier: Oxford, UK, 2014; pp. 57–73. [Google Scholar]
- Li, P.H.; Chu, P.K. 1—Thin film deposition technologies and processing of biomaterials. In Thin Film Coatings for Biomaterials and Biomedical Applications; Griesser, H.J., Ed.; Woodhead Publishing: Sawston, UK, 2016; pp. 3–28. [Google Scholar]
- Yang, C.; Koh, K.; Zhu, X.; Lin, L. On-chip RF inductors with magnetic nano particles medium. In Proceedings of the 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing, China, 5–9 June 2011; pp. 2801–2804. [Google Scholar]
- Ohnuma, S.; Fujimori, H.; Mitani, S.; Masumoto, T. High-frequency magnetic properties in metal–nonmetal granular films. J. Appl. Phys. 1996, 79, 5130–5135. [Google Scholar] [CrossRef]
- Khalili Amiri, P.; Zhuang, Y.; Schellevis, H.; Rejaei, B.; Vroubel, M.; Ma, Y.; Burghartz, J.N. High-resistivity nanogranular Co–Al–O films for high-frequency applications. J. Appl. Phys. 2007, 101, 09M508. [Google Scholar] [CrossRef]
- Ohnuma, S.; Lee, H.; Kobayashi, N.; Fujimori, H.; Masumoto, T. Co-Zr-O nano-granular thin films with improved high frequency soft magnetic properties. IEEE Trans. Magn. 2001, 37, 2251–2254. [Google Scholar] [CrossRef]
- Lu, S.; Sun, Y.; Goldbeck, M.; Zimmanck, D.R.; Sullivan, C.R. 30-MHz power inductor using nano-granular magnetic material. In Proceedings of the 2007 IEEE Power Electronics Specialists Conference, Orlando, FL, USA, 17–21 June 2007; pp. 1773–1776. [Google Scholar]
- Yao, D.; Levey, C.G.; Tian, R.; Sullivan, C.R. Microfabricated V-groove power inductors using multilayer Co–Zr–O thin films for very-high-frequency DC–DC converters. IEEE Trans. Power Electron. 2012, 28, 4384–4394. [Google Scholar] [CrossRef]
- Kijima, H.; Ohnuma, S.; Masumoto, H. High-frequency soft magnetic properties of isotropic Co-Al-N Films. IEEE Trans. Magn. 2011, 47, 3928–3931. [Google Scholar] [CrossRef]
- Sun, N.; Wang, S. Anisotropy dispersion effects on the high frequency behavior of soft magnetic Fe–Co–N thin films. J. Appl. Phys. 2003, 93, 6468–6470. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, Y.; Ohnuma, S.; Kobayashi, N.; Masumoto, H. Structure and high-frequency magnetic properties of Co-HfN nanogranular films. In Proceedings of the 2015 IEEE International Magnetics Conference (INTERMAG), Beijing, China, 11–15 May 2015; p. 1. [Google Scholar]
- Ha, N.; Park, B.; Kim, H.; Kim, C.; Kim, C. High frequency characteristics and magnetic properties of CoFeN/native-oxide multilayer films. J. Magn. Magn. Mater. 2005, 286, 267–270. [Google Scholar] [CrossRef]
- Ikeda, K.; Kobayashi, K.; Fujimoto, M. Multilayer nanogranular magnetic thin films for GHz applications. J. Appl. Phys. 2002, 92, 5395–5400. [Google Scholar] [CrossRef]
- Ge, S.; Yao, D.; Yamaguchi, M.; Yang, X.; Zuo, H.; Ishii, T.; Zhou, D.; Li, F. Microstructure and magnetism of FeCo–SiO2 nano-granular films for high frequency application. J. Phys. D Appl. Phys. 2007, 40, 3660. [Google Scholar] [CrossRef]
- Kim, I.; Kim, J.; Kim, K.H.; Yamaguchi, M. Effects of boron contents on magnetic properties of Fe-Co-B thin films. IEEE Trans. Magn. 2004, 40, 2706–2708. [Google Scholar] [CrossRef]
- Ohnuma, S.; Fujimori, H.; Masumoto, T.; Xiong, X.Y.; Ping, D.; Hono, K. FeCo–Zr–O nanogranular soft-magnetic thin films with a high magnetic flux density. Appl. Phys. Lett. 2003, 82, 946–948. [Google Scholar] [CrossRef]
- Sohn, J.; Byun, D.J.; Lim, S.H. Nanogranular Co–Fe–Al–O sputtered thin films for magnetoelastic device applications in the GHz frequency range. J. Magn. Magn. Mater. 2004, 272, 1500–1502. [Google Scholar] [CrossRef]
- Ha, N.; Yoon, T.; Kim, H.; Lim, J.; Kim, C.; Kim, C. High frequency permeability of soft magnetic CoFeAlO films with high resistivity. J. Magn. Magn. Mater. 2005, 290, 1571–1575. [Google Scholar] [CrossRef]
- Cai, H.-L.; Zhan, J.; Yang, C.; Chen, X.; Yang, Y.; Chi, B.-Y.; Wang, A.; Ren, T.-L. Application of Ferrite Nanomaterial in RF On-Chip Inductors. J. Nanomater. 2013, 2013, 832401. [Google Scholar] [CrossRef]
- Ni, Z.; Zhan, J.; Fang, Q.; Wang, X.; Shi, Z.; Yang, Y.; Ren, T.-L.; Wang, A.; Cheng, Y.; Gao, J. Design and analysis of vertical nanoparticles-magnetic-cored inductors for RF ICs. IEEE Trans. Electron Devices 2013, 60, 1427–1435. [Google Scholar] [CrossRef]
- Tian, Q.; Wang, Q.; Xie, Q.; Li, J. Aqueous Solution Preparation, Structure, and Magnetic Properties of Nano-Granular ZnxFe3−xO4 Ferrite Films. Nanoscale Res. Lett. 2010, 5, 1518. [Google Scholar] [CrossRef]
- Tsubaki, K.; Nakajima, Y.; Hanajiri, T.; Yamaguchi, H. Proposal of carbon nanotube inductors. Proc. J. Phys. Conf. Ser. 2006, 38, 49. [Google Scholar] [CrossRef]
- Kim, B.C. Novel design of carbon nanotube based RF inductors. J. Nanotechnol. Eng. Med. 2010, 1, 011003. [Google Scholar] [CrossRef]
- Kim, B.C. Development of CNT-based inductors for integrated biosensors. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 2–6 September 2009; pp. 4116–4119. [Google Scholar]
- Watts, P.; Hsu, W.; Randall, D.; Kotzeva, V.; Chen, G. Fe-filled carbon nanotubes: Nano-electromagnetic inductors. Chem. Mater. 2002, 14, 4505–4508. [Google Scholar] [CrossRef]
- Nieuwoudt, A.; Massoud, Y. Predicting the performance of low-loss on-chip inductors realized using carbon nanotube bundles. IEEE Trans. Electron Devices 2007, 55, 298–312. [Google Scholar] [CrossRef]
- Plombon, J.; O’Brien, K.P.; Gstrein, F.; Dubin, V.M.; Jiao, Y. High-frequency electrical properties of individual and bundled carbon nanotubes. Appl. Phys. Lett. 2007, 90, 063106. [Google Scholar] [CrossRef]
- Sreeja, B.; Radha, S. Fabrication and characterization of high-q nano-inductor for power electronics. Bonfring Int. J. Power Syst. Integr. Circuits 2011, 1, 43–47. [Google Scholar]
- Wiselin, J.; Suseela, S.B.; Jalaja, B.V.; Ramani, S.D.S.P.; Prasad, R.; Devaraj, S.; Shahul, S.; Swaminathan, S. A Low cost carbon nanofiber based spiral inductor: Inference and implementation. Adv. Mater. Sci. Eng. 2014, 2014, 384917. [Google Scholar] [CrossRef]
- Spiegel, J.; Renaux, C.; Darques, M.; De La Torre, J.; Piraux, L.; Simon, P.; Raskin, J.-P.; Huynen, I. Ferromagnetic inductors on commercial nanoporous anodic alumina. In Proceedings of the 2009 European Microwave Conference (EuMC), Rome, Italy, 29 September–1 October 2009; pp. 582–585. [Google Scholar]
- Hamoir, G.; Piraux, L.; Huynen, I. Q-factor improvement of integrated inductors using high aspect ratio ferromagnetic nanowires. Microw. Opt. Technol. Lett. 2012, 54, 1633–1637. [Google Scholar] [CrossRef]
- Xiao, T.; Ma, X.; Zhang, H.; Reisner, D.; Raj, P.; Wan, L.; Tummala, R. Magnetic nanocomposite paste: An ideal high-µ, k and q nanomaterial for embedded inductors in high frequency electronic applications. In Proceedings of the 9th World Multiconference Systemics, Cyberntics Informatics, Orlando, FL, USA, 10–13 July 2005; pp. 10–13. [Google Scholar]
- Li, H.; Xu, C.; Banerjee, K. Carbon Nanomaterials: The Ideal Interconnect Technology for Next-Generation ICs. IEEE Des. Test Comput. 2010, 27, 20–31. [Google Scholar]
- Zhao, M.; Zhang, L.; Liu, Z.-Q.; Xiong, M.-Y.; Sun, L. Structure and properties of Sn-Cu lead-free solders in electronics packaging. Sci. Technol. Adv. Mater. 2019, 20, 421–444. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Chan, Y.C. Research advances in nano-composite solders. Microelectron. Reliab. 2009, 49, 223–234. [Google Scholar] [CrossRef]
- Amagai, M. A study of nanoparticles in Sn–Ag based lead free solders. Microelectron. Reliab. 2008, 48, 1–16. [Google Scholar] [CrossRef]
- Gao, Y.; Zou, C.; Yang, B.; Zhai, Q.; Liu, J.; Zhuravlev, E.; Schick, C. Nanoparticles of SnAgCu lead-free solder alloy with an equivalent melting temperature of SnPb solder alloy. J. Alloys Compd. 2009, 484, 777–781. [Google Scholar] [CrossRef]
- Zou, C.D.; Gao, Y.L.; Yang, B.; Xia, X.Z.; Zhai, Q.J.; Andersson, C.; Liu, J. Nanoparticles of the lead-free solder alloy Sn-3.0Ag-0.5Cu with large melting temperature depression. J. Electron. Mater. 2009, 38, 351–355. [Google Scholar] [CrossRef]
- Haseeb, A.; Leng, T.S. Effects of Co nanoparticle addition to Sn–3.8Ag–0.7Cu solder on interfacial structure after reflow and ageing. Intermetallics 2011, 19, 707–712. [Google Scholar] [CrossRef]
- Amagai, M. A study of nanoparticles in SnAg-based lead free solders for intermetallic compounds and drop test performance. In Proceedings of the 56th Electronic Components and Technology Conference 2006, San Diego, CA, USA, 30 May–2 June 2006; p. 21. [Google Scholar]
- Jiang, H.; Moon, K.-S.; Hua, F.; Wong, C. Synthesis and thermal and wetting properties of tin/silver alloy nanoparticles for low melting point lead-free solders. Chem. Mater. 2007, 19, 4482–4485. [Google Scholar] [CrossRef]
- Liu, J.; Lu, D.; Andersson, C.; Zou, C.; Gao, Y.; Yang, B.; Zhai, Q.; Andersson, C.; Liu, J. Melting temperature depression of Sn-0.4Co-0.7Cu lead-free solder nanoparticles. Solder. Surf. Mt. Technol. 2009, 21, 9–13. [Google Scholar] [CrossRef]
- Aradhana, R.; Mohanty, S.; Nayak, S.K. A review on epoxy-based electrically conductive adhesives. Int. J. Adhes. Adhes. 2020, 99, 102596. [Google Scholar] [CrossRef]
- Kausar, A. 9—Application of Polymer-Based Composites: Conductive Pastes Based on Polymeric Composite/Nanocomposite. In Electrical Conductivity in Polymer-Based Composites; Taherian, R., Kausar, A., Eds.; William Andrew Publishing: Norwich, NY, USA, 2019; pp. 255–274. [Google Scholar]
- Lu, D.; Wong, C. Electrically Conductive Adhesives (ECAs). In Materials for Advanced Packaging; Lu, D., Wong, C., Eds.; Springer: Boston, MA, USA, 2017; pp. 421–468. [Google Scholar]
- Li, Y.; Wong, C. Recent advances of conductive adhesives as a lead-free alternative in electronic packaging: Materials, processing, reliability and applications. Mater. Sci. Eng. R Rep. 2006, 51, 1–35. [Google Scholar] [CrossRef]
- Post, W.; Susa, A.; Blaauw, R.; Molenveld, K.; Knoop, R.J.I. A Review on the Potential and Limitations of Recyclable Thermosets for Structural Applications. Polym. Rev. 2020, 60, 359–388. [Google Scholar] [CrossRef]
- Li, Y.; Lu, D.; Wong, C. Isotropically conductive adhesives (ICAs). In Electrical Conductive Adhesives with Nanotechnologies; Springer: New York, NY, USA, 2010; pp. 121–225. [Google Scholar]
- Wu, H.; Liu, J.; Wu, X.; Ge, M.; Wang, Y.; Zhang, G.; Jiang, J. High conductivity of isotropic conductive adhesives filled with silver nanowires. Int. J. Adhes. Adhes. 2006, 26, 617–621. [Google Scholar] [CrossRef]
- Jiang, H.; Moon, K.-s.; Li, Y.; Wong, C. Surface functionalized silver nanoparticles for ultrahigh conductive polymer composites. Chem. Mater. 2006, 18, 2969–2973. [Google Scholar] [CrossRef]
- Jiang, H.; Moon, K.-S.; Lu, J.; Wong, C. Conductivity enhancement of nano silver-filled conductive adhesives by particle surface functionalization. J. Electron. Mater. 2005, 34, 1432–1439. [Google Scholar] [CrossRef]
- Li, J.; Lumpp, J.K. Electrical and mechanical characterization of carbon nanotube filled conductive adhesive. In Proceedings of the 2006 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 May 2006; p. 6. [Google Scholar]
- Wu, H.; Wu, X.; Ge, M.; Zhang, G.; Wang, Y.; Jiang, J. Properties investigation on isotropical conductive adhesives filled with silver coated carbon nanotubes. Compos. Sci. Technol. 2007, 67, 1182–1186. [Google Scholar] [CrossRef]
- Li, G.Y.; Wong, C. Nano-Ag filled anisotropic conductive adhesives (ACA) with self-assembled monolayer and sintering behavior for high. In Proceedings of theElectronic Components and Technology, Lake Buena Vista, FL, USA, 31 May–3 June 2005; pp. 1147–1154. [Google Scholar]
- Li, Y.; Moon, K.-S.; Wong, C. Monolayer-protected silver nano-particle-based anisotropic conductive adhesives: Enhancement of electrical and thermal properties. J. Electron. Mater. 2005, 34, 1573–1578. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, S.; Bhatnagar, S.; He, S.; Ahmad, N.; Rahaman, A.; Gao, J.; Narang, J.; Khalifa, I.; Nag, A. Development and Applications of Embedded Passives and Interconnects Employing Nanomaterials. Nanomaterials 2022, 12, 3284. https://doi.org/10.3390/nano12193284
Deng S, Bhatnagar S, He S, Ahmad N, Rahaman A, Gao J, Narang J, Khalifa I, Nag A. Development and Applications of Embedded Passives and Interconnects Employing Nanomaterials. Nanomaterials. 2022; 12(19):3284. https://doi.org/10.3390/nano12193284
Chicago/Turabian StyleDeng, Shanggui, Sharad Bhatnagar, Shan He, Nabeel Ahmad, Abdul Rahaman, Jingrong Gao, Jagriti Narang, Ibrahim Khalifa, and Anindya Nag. 2022. "Development and Applications of Embedded Passives and Interconnects Employing Nanomaterials" Nanomaterials 12, no. 19: 3284. https://doi.org/10.3390/nano12193284
APA StyleDeng, S., Bhatnagar, S., He, S., Ahmad, N., Rahaman, A., Gao, J., Narang, J., Khalifa, I., & Nag, A. (2022). Development and Applications of Embedded Passives and Interconnects Employing Nanomaterials. Nanomaterials, 12(19), 3284. https://doi.org/10.3390/nano12193284