Perovskite-Surface-Confined Grain Growth for High-Performance Perovskite Solar Cells
Abstract
:1. Introduction
2. Results and Discussions
3. Conclusions
4. Materials and Methods
4.1. Preparation of the Precursor Solutions
4.2. Fabrication of the Perovskite Solar Cells
4.3. Device Characterizations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tu, Y.; Wu, J.; Xu, G.; Yang, X.; Cai, R.; Gong, Q.; Zhu, R.; Huang, W. Perovskite solar cells for space applications: Progress and challenges. Adv. Mater. 2021, 33, 2006545. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.-L.; Zhou, Y.-H.; Lou, Y.-H.; Wang, Z.-K. Perovskite indoor photovoltaics: Opportunity and challenges. Chem. Sci. 2021, 12, 11936–11954. [Google Scholar] [CrossRef] [PubMed]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- Green, M.A.; Dunlop, E.D.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Hao, X. Solar cell efficiency tables (Version 58). Prog. Photovolt. Res. Appl. 2021, 29, 655–667. [Google Scholar] [CrossRef]
- Sajid, S.; Khan, S.; Khan, A.; Khan, D.; Issakhov, A.; Park, J. Antisolvent-fumigated grain growth of active layer for efficient perovskite solar cells. Sol. Energy 2021, 225, 1001–1008. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, Z.; Jin, J.; Zhang, X.; Zhou, Y.; Cui, X.; Hou, X.; Zhao, X.; Tai, Q. Modulated crystal growth enables efficient and stable perovskite solar cells in humid air. Chem. Eng. J. 2022, 442, 136267. [Google Scholar] [CrossRef]
- Rezaee, E.; Kutsarov, D.; Li, B.; Bi, J.; Silva, S.R.P. A route towards the fabrication of large-scale and high-quality perovskite films for optoelectronic devices. Sci. Rep. 2022, 12, 7411. [Google Scholar] [CrossRef]
- Lee, J.-W.; Park, N.-G. Two-step deposition method for high-efficiency perovskite solar cells. MRS Bull. 2015, 40, 654–659. [Google Scholar] [CrossRef]
- Zhou, H.; Song, Z.; Grice, C.R.; Chen, C.; Yang, X.; Wang, H.; Yan, Y. Pressure-assisted annealing strategy for high-performance self-powered all-inorganic perovskite microcrystal photodetectors. J. Phys. Chem. Lett. 2018, 9, 4714–4719. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Kang, L.; Yu, T.; Lv, B.; Wang, Y.; Chen, X.; Wang, X.; Zhou, Y.; Zou, Z. Facile face-down annealing triggered remarkable texture development in CH3NH3PbI3 films for high-performance perovskite solar cells. ACS Appl. Mater. Interfaces 2017, 9, 6104–6113. [Google Scholar] [CrossRef] [PubMed]
- Shen, D.; Mao, H.; Li, Y.; Abate, A.; Wei, M. Covering effect of conductive glass: A facile route to tailor the grain growth of hybrid perovskites for highly efficient solar cells. J. Mater. Chem. A 2018, 6, 20289–20296. [Google Scholar] [CrossRef]
- Ahn, N.; Son, D.-Y.; Jang, I.-H.; Kang, S.M.; Choi, M.; Park, N.-G. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide. J. Am. Chem. Soc. 2015, 137, 8696–8699. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, M.; Shimazaki, A.; Jung, M.; Nakaike, Y.; Maruyama, N.; Yakumaru, S.; Rafieh, A.I.; Sasamori, T.; Tokitoh, N.; Ekanayake, P. A Purified, Solvent-Intercalated Precursor Complex for Wide-Process-Window Fabrication of Efficient Perovskite Solar Cells and Modules. Angew. Chemie Int. Ed. 2019, 58, 9389–9393. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Huang, F.; Huang, W.; Dkhissi, Y.; Zhu, Y.; Etheridge, J.; Gray-Weale, A.; Bach, U.; Cheng, Y.; Spiccia, L. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chemie Int. Ed. 2014, 53, 9898–9903. [Google Scholar] [CrossRef] [PubMed]
- Wei, D.; Ma, F.; Wang, R.; Dou, S.; Cui, P.; Huang, H.; Ji, J.; Jia, E.; Jia, X.; Sajid, S.; et al. Ion-Migration Inhibition by the Cation–π Interaction in Perovskite Materials for Efficient and Stable Perovskite Solar Cells. Adv. Mater. 2018, 30, 1707583. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Yan, H.; Duan, M.; Ji, J.; Liu, X.; Jiang, H.; Liu, B.; Sajid, S.; Cui, P.; Li, Y.; et al. TiO2 surface oxygen vacancy passivation towards mitigated interfacial lattice distortion and efficient perovskite solar cell. Appl. Surf. Sci. 2021, 544, 148583. [Google Scholar] [CrossRef]
- Elseman, A.M.; Shalan, A.E.; Sajid, S.; Rashad, M.M.; Hassan, A.M.; Li, M. Copper-Substituted Lead Perovskite Materials Constructed with Different Halides for Working (CH3NH3)2CuX4-Based Perovskite Solar Cells from Experimental and Theoretical View. ACS Appl. Mater. Interfaces 2018, 10, 11699–11707. [Google Scholar] [CrossRef] [PubMed]
- Elseman, A.M.; Sharmoukh, W.; Sajid, S.; Cui, P.; Ji, J.; Dou, S.; Wei, D.; Huang, H.; Xi, W.; Chu, L.; et al. Superior Stability and Efficiency Over 20% Perovskite Solar Cells Achieved by a Novel Molecularly Engineered Rutin–AgNPs/Thiophene Copolymer. Adv. Sci. 2018, 5, 1800568. [Google Scholar] [CrossRef] [PubMed]
- Wei, D.; Huang, H.; Cui, P.; Ji, J.; Dou, S.; Jia, E.; Sajid, S.; Cui, M.; Chu, L.; Li, Y.; et al. Moisture-tolerant supermolecule for the stability enhancement of organic–inorganic perovskite solar cells in ambient air. Nanoscale 2019, 11, 1228–1235. [Google Scholar] [CrossRef]
- Huang, H.; Liu, X.; Duan, M.; Ji, J.; Jiang, H.; Liu, B.; Sajid, S.; Cui, P.; Wei, D.; Li, Y.; et al. Dual Function of Surface Alkali-Gas Erosion on SnO2 for Efficient and Stable Perovskite Solar Cells. ACS Appl. Energy Mater. 2020, 3, 5039–5049. [Google Scholar] [CrossRef]
- Sajid, S.; Huang, H.; Ji, J.; Jiang, H.; Duan, M.; Liu, X.; Liu, B.; Li, M. Quest for robust electron transporting materials towards efficient, hysteresis-free and stable perovskite solar cells, Renew. Sustain. Energy Rev. 2021, 152, 111689. [Google Scholar] [CrossRef]
- Ochoa-Martinez, E.; Ochoa, M.; Ortuso, R.D.; Ferdowsi, P.; Carron, R.; Tiwari, A.N.; Steiner, U.; Saliba, M. Physical Passivation of Grain Boundaries and Defects in Perovskite Solar Cells by an Isolating Thin Polymer. ACS Energy Lett. 2021, 6, 2626–2634. [Google Scholar] [CrossRef]
- Chu, Z.; Yang, M.; Schulz, P.; Wu, D.; Ma, X.; Seifert, E.; Sun, L.; Li, X.; Zhu, K.; Lai, K. Impact of grain boundaries on efficiency and stability of organic-inorganic trihalide perovskites. Nat. Commun. 2017, 8, 2230. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wu, Y.; Liu, Y.; Lu, M.; Yang, L.; Wang, Y.; Yu, W.W.; Bai, X.; Zhang, Y.; Dai, Q. Interface and grain boundary passivation for efficient and stable perovskite solar cells: The effect of terminal groups in hydrophobic fused benzothiadiazole-based organic semiconductors. Nanoscale Horiz. 2020, 5, 1574–1585. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Qi, Y.; Conkle, K.; Xiong, J.; Box, D.; Ray, P.; Pradhan, N.R.; Shahbazyan, T.V.; Dai, Q. Perovskite films prepared by solvent volatilization via DMSO-based intermediate phase for photovoltaics. Sol. Energy 2021, 218, 383–391. [Google Scholar] [CrossRef]
- Kim, J.; Hwang, T.; Lee, S.; Lee, B.; Kim, J.; Jang, G.S.; Nam, S.; Park, B. Solvent and intermediate phase as boosters for the perovskite transformation and solar cell performance. Sci. Rep. 2016, 6, 25648. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhang, Y.; Kong, W.; Hu, M.; Zhang, L.; Liu, C.; Li, X.; Pan, C.; Yu, G.; Cheng, C.; et al. Crystallization manipulation and morphology evolution for highly efficient perovskite solar cell fabrication via hydration water induced intermediate phase formation under heat assisted spin-coating. J. Mater. Chem. A 2018, 6, 3012–3021. [Google Scholar] [CrossRef]
- Chen, S.; Xiao, X.; Chen, B.; Kelly, L.L.; Zhao, J.; Lin, Y.; Toney, M.F.; Huang, J. Crystallization in one-step solution deposition of perovskite films: Upward or downward? Sci. Adv. 2022, 7, eabb2412. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, W.; Zhang, Z.; Liu, S.; Wu, J.; Guan, Y.; Mei, A.; Rong, Y.; Hu, Y.; Han, H. Crystallization control of ternary-cation perovskite absorber in triple-mesoscopic layer for efficient solar cells. Adv. Energy Mater. 2020, 10, 1903092. [Google Scholar] [CrossRef]
- Rong, Y.; Venkatesan, S.; Guo, R.; Wang, Y.; Bao, J.; Li, W.; Fan, Z.; Yao, Y. Critical kinetic control of non-stoichiometric intermediate phase transformation for efficient perovskite solar cells. Nanoscale 2016, 8, 12892–12899. [Google Scholar] [CrossRef] [PubMed]
- Sajid, S.; Elseman, A.M.; Wei, D.; Ji, J.; Dou, S.; Huang, H.; Cui, P.; Li, M. NiO@carbon spheres: A promising composite electrode for scalable fabrication of planar perovskite solar cells at low cost. Nano Energy 2019, 55, 470–476. [Google Scholar] [CrossRef]
- Tian, Y.; Scheblykin, I.G. Artifacts in absorption measurements of organometal halide perovskite materials: What are the real spectra? J. Phys. Chem. Lett. 2015, 6, 3466–3470. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Partida, E.; Hempel, H.; Caicedo-Dávila, S.; Raoufi, M.; Peña-Camargo, F.; Grischek, M.; Gunder, R.; Diekmann, J.; Caprioglio, P.; Brinkmann, K.O.; et al. Large-Grain Double Cation Perovskites with 18 μs Lifetime and High Luminescence Yield for Efficient Inverted Perovskite Solar Cells. ACS Energy Lett. 2021, 6, 1045–1054. [Google Scholar] [CrossRef]
PSCs Prepared with | Scan Condition | Voc (V) | Jsc (mA.cm−2) | FF (%) | PCE (%) |
---|---|---|---|---|---|
CPA | RB | 1.096 | 23.26 | 74.23 | 18.94 |
FB | 1.070 | 20.88 | 76.28 | 17.04 | |
SCPA-2 | RB | 1.113 | 24.81 | 78.18 | 21.59 |
FB | 1.109 | 24.02 | 76.78 | 20.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sajid, S.; Alzahmi, S.; Salem, I.B.; Obaidat, I.M. Perovskite-Surface-Confined Grain Growth for High-Performance Perovskite Solar Cells. Nanomaterials 2022, 12, 3352. https://doi.org/10.3390/nano12193352
Sajid S, Alzahmi S, Salem IB, Obaidat IM. Perovskite-Surface-Confined Grain Growth for High-Performance Perovskite Solar Cells. Nanomaterials. 2022; 12(19):3352. https://doi.org/10.3390/nano12193352
Chicago/Turabian StyleSajid, Sajid, Salem Alzahmi, Imen Ben Salem, and Ihab M. Obaidat. 2022. "Perovskite-Surface-Confined Grain Growth for High-Performance Perovskite Solar Cells" Nanomaterials 12, no. 19: 3352. https://doi.org/10.3390/nano12193352
APA StyleSajid, S., Alzahmi, S., Salem, I. B., & Obaidat, I. M. (2022). Perovskite-Surface-Confined Grain Growth for High-Performance Perovskite Solar Cells. Nanomaterials, 12(19), 3352. https://doi.org/10.3390/nano12193352