High Strength Die-Attach Joint Formation by Pressureless Sintering of Organic Amine Modified Ag Nanoparticle Paste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Surface Modification of Ag Nanoparticles
2.3. Modified Nano-Ag Paste Preparation and Bonding Process
2.4. Measurement and Characterization
3. Results and Discussion
3.1. Characterization of Commercial Ag Nanoparticles
3.2. Analysis of the Effect of Organic Amine Modification on the Surface of Ag Nanoparticles
3.3. Resistivity of Ag Paste Sintered Films
3.4. Shear Strength of Bonded Joints
3.5. Sintering Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sugiura, K.; Iwashige, T.; Tsuruta, K.; Chen, C.; Nagao, S.; Funaki, T.; Suganuma, K. Reliability Evaluation of SiC Power Module with Sintered Ag Die Attach and Stress-Relaxation Structure. IEEE Trans. Compon. Packag. Manuf. Technol. 2019, 9, 609–615. [Google Scholar] [CrossRef]
- Villacarlos, B.J.L.; Pulutan, M.L.D. Thermomechanical Stress and Strain Distribution and Thermal Resistivity Correlation to Bondline Thickness of Ag Sinter. In Proceedings of the 2020 IEEE 22nd Electronics Packaging Technology Conference (EPTC), Singapore, 2–4 December 2020; pp. 307–311. [Google Scholar]
- Kim, D.; Chen, C.; Nagao, S.; Suganuma, K. Mechanical Characteristics and Fracture Behavior of GaN/DBA Die-Attached during Thermal Aging: Pressure-Less Hybrid Ag Sinter Joint and Pb–5Sn Solder Joint. J. Mater. Sci. Mater. Electron. 2020, 31, 587–598. [Google Scholar] [CrossRef]
- Jibran, M.; Sun, X.; Hua, J.; Wang, B.; Yamauchi, Y.; Da, B.; Ding, Z.J. Cu2Zn(Si,Ge)Se4 Quaternary Semiconductors as Potential Photovoltaic Materials. Chem. Phys. Lett. 2020, 756, 137820. [Google Scholar] [CrossRef]
- Calabretta, M.; Renna, M.; Vinciguerra, V.; Messina, A.A. Power Packages Interconnections for High Reliability Automotive Applications. In Proceedings of the ESSDERC 2019—49th European Solid-State Device Research Conference (ESSDERC), Krakow, Poland, 23–26 September 2019; pp. 35–39. [Google Scholar]
- Liu, Y.; Chen, C.; Suganuma, K.; Sakamoto, T.; Ueshima, M.; Naoe, T.; Nishikawa, H. Ag Die-Attach Paste Modified by WC Additive for High-Temperature Stability Enhancement. In Proceedings of the 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 31 May–3 June 2022; pp. 2153–2157. [Google Scholar]
- Pietrikova, A.; Girasek, T.; Durisin, J.; Saksl, K. Pressureless Silver Sintering in Power Application. In Proceedings of the 2018 International Conference on Diagnostics in Electrical Engineering (Diagnostika), Pilsen, Czech Republic, 4–7 September 2018; pp. 1–4. [Google Scholar]
- Guo, L.; Liu, W.; Ji, X.; Zhong, Y.; Hang, C.; Wang, C. Robust Cu–Cu Bonding with Multiscale Coralloid Nano-Cu3 Sn Paste for High-Power Electronics Packaging. ACS Appl. Electron. Mater. 2022, 4, 3457–3469. [Google Scholar] [CrossRef]
- Lee, H.; Smet, V.; Tummala, R. A Review of SiC Power Module Packaging Technologies: Challenges, Advances, and Emerging Issues. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 239–255. [Google Scholar] [CrossRef]
- Yuan, Y.; Wu, H.; Li, J.; Zhu, P.; Sun, R. Cu-Cu Joint Formation by Low-Temperature Sintering of Self-Reducible Cu Nanoparticle Paste under Ambient Condition. Appl. Surf. Sci. 2021, 570, 151220. [Google Scholar] [CrossRef]
- Liu, X.; Liu, L.; Sun, R.; Li, J. Low Temperature Sintering of MOD Assisted Ag Paste for Die-Attach Application. Mater. Lett. 2021, 305, 130799. [Google Scholar] [CrossRef]
- Bhogaraju, S.K.; Hans, A.; Schmid, M.; Elger, G.; Conti, F. Evaluation of Silver and Copper Sintering of First Level Interconnects for High Power LEDs. In Proceedings of the 2018 7th Electronic System-Integration Technology Conference (ESTC), Dresden, Germany, 18–21 September 2018; pp. 1–8. [Google Scholar]
- Mokhtari, O. A Review: Formation of Voids in Solder Joint during the Transient Liquid Phase Bonding Process—Causes and Solutions. Microelectron. Reliab. 2019, 98, 95–105. [Google Scholar] [CrossRef]
- Jung, D.H.; Sharma, A.; Mayer, M.; Jung, J.P. A Review on Recent Advances in Transient Liquid Phase (TLP) Bonding for Thermoelectric Power Module. Rev. Adv. Mater. Sci. 2018, 53, 147–160. [Google Scholar] [CrossRef]
- Chen, H.; Hu, T.; Li, M.; Zhao, Z. Cu@Sn Core–Shell Structure Powder Preform for High-Temperature Applications Based on Transient Liquid Phase Bonding. IEEE Trans. Power Electron. 2017, 32, 441–451. [Google Scholar] [CrossRef]
- Yoon, J.-W.; Lee, B.-S. Initial Interfacial Reactions of Ag/In/Ag and Au/In/Au Joints during Transient Liquid Phase Bonding. Microelectron. Eng. 2018, 201, 6–9. [Google Scholar] [CrossRef]
- Shao, H.; Wu, A.; Bao, Y.; Zhao, Y.; Zou, G.; Liu, L. Thermal Reliability Investigation of Ag-Sn TLP Bonds for High-Temperature Power Electronics Application. Microelectron. Reliab. 2018, 91, 38–45. [Google Scholar] [CrossRef]
- Ji, H.; Zhou, J.; Liang, M.; Lu, H.; Li, M. Ultra-Low Temperature Sintering of Cu@Ag Core-Shell Nanoparticle Paste by Ultrasonic in Air for High-Temperature Power Device Packaging. Ultrason. Sonochem. 2018, 41, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Bhogaraju, S.K.; Mokhtari, O.; Pascucci, J.; Conti, F.; Kotadia, H.R.; Elger, G. A Multi-Pronged Approach to Low-Pressure Cu Sintering Using Surface-Modified Particles, Substrate and Chip Metallization. Int. Symp. Microelectron. 2019, 2019, 000387–000392. [Google Scholar] [CrossRef]
- Wang, X.; Mei, Y.; Li, X.; Wang, M.; Cui, Z.; Lu, G.-Q. Pressureless Sintering of Nanosilver Paste as Die Attachment on Substrates with ENIG Finish for Semiconductor Applications. J. Alloys Compd. 2019, 777, 578–585. [Google Scholar] [CrossRef]
- Li, H.; Wang, C.; Wu, L.; Chen, M.; Wu, C.; Wang, N.; Li, Z.; Tang, L.; Pang, Q. Optimization of Process Parameters, Microstructure, and Thermal Conductivity Properties of Ti-Coated Diamond/Copper Composites Prepared by Spark Plasma Sintering. J. Mater. Sci. Mater. Electron. 2021, 32, 9115–9125. [Google Scholar] [CrossRef]
- Yan, J. A Review of Sintering-Bonding Technology Using Ag Nanoparticles for Electronic Packaging. Nanomaterials 2021, 11, 927. [Google Scholar] [CrossRef]
- Weber, C.; Hutter, M. Ag Sintering—An Alternative Large Area Joining Technology. In Proceedings of the 2018 7th Electronic System-Integration Technology Conference (ESTC), Dresden, Germany, 18–21 September 2018; pp. 1–8. [Google Scholar]
- Abt, M.; Roch, A.; Qayyum, J.A.; Pestotnik, S.; Stepien, L.; Abu-Ageel, A.; Wright, B.; Ulusoy, A.C.; Albrecht, J.; Harle, L.; et al. Aerosol-Printed Highly Conductive Ag Transmission Lines for Flexible Electronic Devices. IEEE Trans. Compon. Packag. Manuf. Technol. 2018, 8, 1838–1844. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, S.; Lin, T.; Zhang, P.; He, P.; Paik, K.-W. Highly Mechanical and High-Temperature Properties of Cu–Cu Joints Using Citrate-Coated Nanosized Ag Paste in Air. Prog. Nat. Sci. Mater. Int. 2021, 31, 129–140. [Google Scholar] [CrossRef]
- Chen, C.; Yeom, J.; Choe, C.; Liu, G.; Gao, Y.; Zhang, Z.; Zhang, B.; Kim, D.; Suganuma, K. Necking Growth and Mechanical Properties of Sintered Ag Particles with Different Shapes under Air and N2 Atmosphere. J. Mater. Sci. 2019, 54, 13344–13357. [Google Scholar] [CrossRef]
- Mysliwiec, M.; Kisiel, R.; Pavlov, K.; Kruszewski, M.J. Pressureless Direct Bonding of Au Metallized Substrate with Si Chips by Micro-Ag Particles. In Proceedings of the 2022 45th International Spring Seminar on Electronics Technology (ISSE), Vienna, Austria, 11–15 May 2022; pp. 1–7. [Google Scholar]
- Mo, L.; Guo, Z.; Yang, L.; Zhang, Q.; Fang, Y.; Xin, Z.; Chen, Z.; Hu, K.; Han, L.; Li, L. Silver Nanoparticles Based Ink with Moderate Sintering in Flexible and Printed Electronics. Int. J. Mol. Sci. 2019, 20, 2124. [Google Scholar] [CrossRef] [PubMed]
- Grouchko, M.; Kamyshny, A.; Mihailescu, C.F.; Anghel, D.F.; Magdassi, S. Conductive Inks with a “Built-In” Mechanism That Enables Sintering at Room Temperature. ACS Nano 2011, 5, 3354–3359. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, J.H.; Wajahat, M.; Jeong, H.; Chang, W.S.; Cho, S.H.; Kim, J.T.; Seol, S.K. Three-Dimensional Printing of Silver Microarchitectures Using Newtonian Nanoparticle Inks. ACS Appl. Mater. Interfaces 2017, 9, 18918–18924. [Google Scholar] [CrossRef] [PubMed]
- Mo, L.; Ran, J.; Yang, L.; Fang, Y.; Zhai, Q.; Li, L. Flexible Transparent Conductive Films Combining Flexographic Printed Silver Grids with CNT Coating. Nanotechnology 2016, 27, 065202. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; He, W.; Wang, S.; Tao, Z.; Cheng, L. New Insight into the Size-Controlled Synthesis of Silver Nanoparticles and Its Superiority in Room Temperature Sintering. CrystEngComm 2014, 16, 4431–4440. [Google Scholar] [CrossRef]
- Khalil, A.M.; Hassan, M.L.; Ward, A.A. Novel Nanofibrillated Cellulose/Polyvinylpyrrolidone/Silver Nanoparticles Films with Electrical Conductivity Properties. Carbohydr. Polym. 2017, 157, 503–511. [Google Scholar] [CrossRef]
- Tobjörk, D.; Aarnio, H.; Pulkkinen, P.; Bollström, R.; Määttänen, A.; Ihalainen, P.; Mäkelä, T.; Peltonen, J.; Toivakka, M.; Tenhu, H.; et al. IR-Sintering of Ink-Jet Printed Metal-Nanoparticles on Paper. Thin Solid Films 2012, 520, 2949–2955. [Google Scholar] [CrossRef]
- Mo, L.; Liu, D.; Li, W.; Li, L.; Wang, L.; Zhou, X. Effects of Dodecylamine and Dodecanethiol on the Conductive Properties of Nano-Ag Films. Appl. Surf. Sci. 2011, 257, 5746–5753. [Google Scholar] [CrossRef]
- Volkman, S.K.; Yin, S.; Bakhishev, T.; Puntambekar, K.; Subramanian, V.; Toney, M.F. Mechanistic Studies on Sintering of Silver Nanoparticles. Chem. Mater. 2011, 23, 4634–4640. [Google Scholar] [CrossRef]
- Yu, B.; Wang, K.; Pang, X.; Wu, G.; Pu, J.; Zhao, H. Tribological Properties of Alkylated Reduced Graphene Oxide as Lubricant Additive. Tribol. Int. 2022, 165, 107273. [Google Scholar] [CrossRef]
- Ankireddy, K.; Vunnam, S.; Kellar, J.; Cross, W. Highly Conductive Short Chain Carboxylic Acid Encapsulated Silver Nanoparticle Based Inks for Direct Write Technology Applications. J. Mater. Chem. C 2013, 1, 572–579. [Google Scholar] [CrossRef]
- Shao, C.; Xiong, S.; Cao, X.; Zhang, C.; Luo, T.; Liu, G. Dithiothreitol-Capped Red Emitting Copper Nanoclusters as Highly Effective Fluorescent Nanoprobe for Cobalt (II) Ions Sensing. Microchem. J. 2021, 163, 105922. [Google Scholar] [CrossRef]
- Tripathy, S.K.; Yu, Y.-T. Spectroscopic Investigation of S–Ag Interaction in ω-Mercaptoundecanoic Acid Capped Silver Nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2009, 72, 841–844. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Wang, C.; Arrighi, V. Effects of Amine Types on the Properties of Silver Oxalate Ink and the Associated Film Morphology. J. Mater. Sci. Mater. Electron. 2018, 29, 20895–20906. [Google Scholar] [CrossRef]
- Adhikary, J.; Das, B.; Chatterjee, S.; Kumar Dash, S.; Chattopadhyay, S.; Roy, S.; Chen, J.-W.; Chattopadhyay, T. Ag/CuO Nanoparticles Prepared from a Novel Trinuclear Compound [Cu(Imdz)4(Ag(CN)2)2] (Imdz = Imidazole) by a Pyrolysis Display Excellent Antimicrobial Activity. J. Mol. Struct. 2016, 1113, 9–17. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Wang, C.; Zhu, P.; Xiang, B.; Zhao, T.; Xu, L.; Sun, R. Exploration of Key Factors for the Sintering of Micro-Nano Silver Paste. In Proceedings of the 2022 23rd International Conference on Electronic Packaging Technology (ICEPT), Dalian, China, 10–13 August 2022; pp. 1–6. [Google Scholar]
- Zheng, Y.; Zheng, L.; Zhan, Y.; Lin, X.; Zheng, Q.; Wei, K. Ag/ZnO Heterostructure Nanocrystals: Synthesis, Characterization, and Photocatalysis. Inorg. Chem. 2007, 46, 6980–6986. [Google Scholar] [CrossRef]
- Xia, H.; Yijian, L. Synthesis of Ag-Coated Cu Nano Powder Applied to the Silver Paste on Front of the Solar Cell. In Proceedings of the 2016 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), Chongqing, China, 18–22 July 2016; pp. 392–395. [Google Scholar]
- Gao, S.; Li, Z.; Jiang, K.; Zeng, H.; Li, L.; Fang, X.; Jia, X.; Chen, Y. Biomolecule-Assisted in Situ Route toward 3D Superhydrophilic Ag/CuO Micro/Nanostructures with Excellent Artificial Sunlight Self-Cleaning Performance. J. Mater. Chem. 2011, 21, 7281. [Google Scholar] [CrossRef]
- Zhang, H.; Li, W.; Gao, Y.; Zhang, H.; Jiu, J.; Suganuma, K. Enhancing Low-Temperature and Pressureless Sintering of Micron Silver Paste Based on an Ether-Type Solvent. J. Electron. Mater. 2017, 46, 5201–5208. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, Z.; Zhang, B.; Suganuma, K. Micron-Sized Ag Flake Particles Direct Die Bonding on Electroless Ni–P-Finished DBC Substrate: Low-Temperature Pressure-Free Sintering, Bonding Mechanism and High-Temperature Aging Reliability. J. Mater. Sci. Mater. Electron. 2020, 31, 1247–1256. [Google Scholar] [CrossRef]
- Yoon, J.-W.; Back, J.-H.; Jung, S.-B. Effect of Surface Finish Metallization on Mechanical Strength of Ag Sintered Joint. Microelectron. Eng. 2018, 198, 15–21. [Google Scholar] [CrossRef]
- Wang, T.; Chen, X.; Lu, G.-Q.; Lei, G.-Y. Low-Temperature Sintering with Nano-Silver Paste in Die-Attached Interconnection. J. Electron. Mater. 2007, 36, 1333–1340. [Google Scholar] [CrossRef]
- Siow, K.S. Mechanical Properties of Nano-Silver Joints as Die Attach Materials. J. Alloys Compd. 2012, 514, 6–19. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, W.; Bai, H.; Zou, G.; Liu, L.; Peng, P.; Guo, W. Microstructural and Mechanical Evolution of Silver Sintering Die Attach for SiC Power Devices during High Temperature Applications. J. Alloys Compd. 2019, 774, 487–494. [Google Scholar] [CrossRef]
- Kwon, S.; Lee, T.-I.; Lee, H.-J.; Yoo, S. Improved Sinterability of Micro-Scale Copper Paste with a Reducing Agent. Mater. Lett. 2020, 269, 127656. [Google Scholar] [CrossRef]
- Park, S.J.; Martin, J.M.; Guo, J.F.; Johnson, J.L.; German, R.M. Grain Growth Behavior of Tungsten Heavy Alloys Based on the Master Sintering Curve Concept. Metall. Mater. Trans. A 2006, 37, 3337–3346. [Google Scholar] [CrossRef] [Green Version]
Ag Paste | 2θ (°) | FWHM | Size (nm) |
---|---|---|---|
Ag-0 | 38.07556 | 0.24636 | 35.6559 |
Ag-NOA | 38.2275 | 0.15977 | 55.00541 |
Ag-DDA | 38.00677 | 0.19828 | 44.29276 |
Ag-HDA | 38.1224 | 0.26087 | 33.67741 |
Ag-ODA | 38.04315 | 0.36849 | 23.836 |
Time (min) | 2θ (°) | FWHM | Size (nm) |
---|---|---|---|
10 | 38.1475 | 0.25118 | 34.97926 |
30 | 38.2275 | 0.15977 | 55.00541 |
60 | 38.2751 | 0.14933 | 58.85945 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, X.; Li, J.; Xi, S. High Strength Die-Attach Joint Formation by Pressureless Sintering of Organic Amine Modified Ag Nanoparticle Paste. Nanomaterials 2022, 12, 3351. https://doi.org/10.3390/nano12193351
Shen X, Li J, Xi S. High Strength Die-Attach Joint Formation by Pressureless Sintering of Organic Amine Modified Ag Nanoparticle Paste. Nanomaterials. 2022; 12(19):3351. https://doi.org/10.3390/nano12193351
Chicago/Turabian StyleShen, Xingwang, Junjie Li, and Shuang Xi. 2022. "High Strength Die-Attach Joint Formation by Pressureless Sintering of Organic Amine Modified Ag Nanoparticle Paste" Nanomaterials 12, no. 19: 3351. https://doi.org/10.3390/nano12193351
APA StyleShen, X., Li, J., & Xi, S. (2022). High Strength Die-Attach Joint Formation by Pressureless Sintering of Organic Amine Modified Ag Nanoparticle Paste. Nanomaterials, 12(19), 3351. https://doi.org/10.3390/nano12193351