A Versatile Route for Synthesis of Metal Nanoalloys by Discharges at the Interface of Two Immiscible Liquids
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, D.; Gao, J.; Cheng, P.; He, J.; Yin, Y.; Hu, Y.; Chen, L.; Cheng, Y.; Zhao, J. 2D Boron Sheets: Structure, Growth, and Electronic and Thermal Transport Properties. Adv. Funct. Mater. 2020, 30, 1904349. [Google Scholar] [CrossRef]
- Lou, Y.; Xu, J.; Zhang, Y.; Pan, C.; Dong, Y.; Zhu, Y. Metal-support interaction for heterogeneous catalysis: From nanoparticles to single atoms. Mater. Today Nano 2020, 12, 100093. [Google Scholar] [CrossRef]
- Stewart, S.; Wei, Q.; Sun, Y. Surface chemistry of quantum-sized metal nanoparticles under light illumination. Chem. Sci. 2021, 12, 1227–1239. [Google Scholar] [CrossRef]
- Tiwari, K.; Devi, M.M.; Biswas, K.; Chattopadhyay, K. Phase transformation behavior in nanoalloys. Prog. Mater. Sci. 2021, 121, 100794. [Google Scholar] [CrossRef]
- Gonzalez-Reyna, M.; Rodriguez-Lopez, A.; Pérez-Robles, J.F. One-step synthesis of carbon nanospheres with an encapsulated iron-nickel nanoalloy and its potential use as an electrocatalyst. Nanotechnology 2020, 32, 095706. [Google Scholar] [CrossRef] [PubMed]
- Ferrando, R. Determining the equilibrium structures of nanoalloys by computational methods. J. Nanopart. Res. 2018, 20, 179. [Google Scholar] [CrossRef]
- Calvo, F. (Ed.) Nanoalloys: From Fundamentals to Emergent Applications; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Pandey, P.; Kunwar, S.; Sui, M.; Bastola, S.; Lee, J. Modulation of Morphology and Optical Property of Multi-Metallic PdAuAg and PdAg Alloy Nanostructures. Nanoscale Res. Lett. 2018, 13, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci. 2014, 9, 385–406. [Google Scholar]
- Rane, A.V.; Kanny, K.; Abitha, V.K.; Thomas, S. Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites. In Synthesis of Inorganic Nanomaterials; Woodhead Publishing: Cambridge, UK, 2018; pp. 121–139. [Google Scholar] [CrossRef]
- Das, D.; Roy, A. Synthesis of diameter controlled multiwall carbon nanotubes by microwave plasma-CVD on low-temperature and chemically processed Fe nanoparticle catalysts. Appl. Surf. Sci. 2020, 515, 146043. [Google Scholar] [CrossRef]
- Woodard, A.; Xu, L.; Barragan, A.A.; Nava, G.; Wong, B.M.; Mangolini, L. On the non-thermal plasma synthesis of nickel nanoparticles. Plasma Process. Polym. 2018, 15, 1700104. [Google Scholar] [CrossRef]
- Klébert, S.; Keszler, A.M.; Sajó, I.; Drotár, E.; Bertóti, I.; Bódis, E.; Fazekas, P.; Károly, Z.; Szépvölgyi, J. Effect of the solid precursors on the formation of nanosized TiBx powders in RF thermal plasma. Ceram. Int. 2014, 40, 3925–3931. [Google Scholar] [CrossRef] [Green Version]
- Mohai, I.; Gál, L.; Szépvölgyi, J.; Gubicza, J.; Farkas, Z. Synthesis of nanosized zinc ferrites from liquid precursors in RF thermal plasma reactor. J. Eur. Ceram. Soc. 2007, 27, 941–945. [Google Scholar] [CrossRef]
- Mavier, F.; Rat, V.; Bienia, M.; Lejeune, M.; Coudert, J.-F. Suspension and precursor solution plasma spraying by means of synchronous injection in a pulsed arc plasma. Surf. Coat. Technol. 2017, 318, 18–27. [Google Scholar] [CrossRef]
- Schuffenhauer, C.; Parkinson, B.A.; Jin-Phillipp, N.Y.; Joly-Pottuz, L.; Martin, J.-M.; Popovitz-Biro, R.; Tenne, R. Synthesis of Fullerene-Like Tantalum Disulfide Nanoparticles by a Gas-Phase Reaction and Laser Ablation. Small 2005, 1, 1100–1109. [Google Scholar] [CrossRef]
- Hartanto, A.; Ning, X.; Nakata, Y.; Okada, T. Growth mechanism of ZnO nanorods from nanoparticles formed in a laser ablation plume. Appl. Phys. A 2004, 78, 299–301. [Google Scholar] [CrossRef]
- Chen, Q.; Li, J.; Li, Y. A review of plasma–liquid interactions for nanomaterial synthesis. J. Phys. D Appl. Phys. 2015, 48, 424005. [Google Scholar] [CrossRef] [Green Version]
- Belmonte, T.; Hamdan, A.; Kosior, F.; Noël, C.; Henrion, G. Interaction of discharges with electrode surfaces in dielectric liquids: Application to nanoparticle synthesis. J. Phys. D Appl. Phys. 2014, 47, 224016. [Google Scholar] [CrossRef]
- Mariotti, D.; Patel, J.; Švrček, V.; Maguire, P. Plasma-Liquid Interactions at Atmospheric Pressure for Nanomaterials Synthesis and Surface Engineering. Plasma Process. Polym. 2012, 9, 1074–1085. [Google Scholar] [CrossRef]
- Merciris, T.; Valensi, F.; Hamdan, A. Determination of the Electrical Circuit Equivalent to a Pulsed Discharge in Water: Assessment of the Temporal Evolution of Electron Density and Temperature. IEEE Trans. Plasma Sci. 2020, 48, 3193–3202. [Google Scholar] [CrossRef]
- Taylor, N.D.; Fridman, G.; Fridman, A.; Dobrynin, D. Non-equilibrium microsecond pulsed spark discharge in liquid as a source of pressure waves. Int. J. Heat Mass Transf. 2018, 126, 1104–1110. [Google Scholar] [CrossRef]
- Bian, D.C.; Yan, D.; Zhao, J.C.; Niu, S.Q. Experimental Study of Pulsed Discharge Underwater Shock-Related Properties in Pressurized Liquid Water. Adv. Mater. Sci. Eng. 2018, 2018, 8025708. [Google Scholar] [CrossRef] [Green Version]
- Descoeudres, A.; Hollenstein, C.; Wälder, G.; Demellayer, R.; Perez, R. Time- and spatially-resolved characterization of electrical discharge machining plasma. Plasma Sources Sci. Technol. 2008, 17, 024008. [Google Scholar] [CrossRef] [Green Version]
- Saito, G.; Akiyama, T. Nanomaterial Synthesis Using Plasma Generation in Liquid. J. Nanomater. 2015, 2015, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Merciris, T.; Valensi, F.; Hamdan, A. Synthesis of nickel and cobalt oxide nanoparticles by pulsed underwater spark discharges. J. Appl. Phys. 2021, 129, 063303. [Google Scholar] [CrossRef]
- Hamdan, A.; Noël, C.; Ghanbaja, J.; Migot-Choux, S.; Belmonte, T. Synthesis of platinum embedded in amorphous carbon by micro-gap discharge in heptane. Mater. Chem. Phys. 2013, 142, 199–206. [Google Scholar] [CrossRef]
- Tabrizi, N.S.; Ullmann, M.; Vons, V.A.; Lafont, U.; Schmidt-Ott, A. Generation of nanoparticles by spark discharge. J. Nanopart. Res. 2009, 11, 315–332. [Google Scholar] [CrossRef] [Green Version]
- Glad, X.; Gorry, J.; Cha, M.S.; Hamdan, A. Synthesis of core–shell copper–graphite submicronic particles and carbon nano-onions by spark discharges in liquid hydrocarbons. Sci. Rep. 2021, 11, 7516. [Google Scholar] [CrossRef] [PubMed]
- Hamdan, A.; Kabbara, H.; Noël, C.; Ghanbaja, J.; Redjaimia, A.; Belmonte, T. Synthesis of two-dimensional lead sheets by spark discharge in liquid nitrogen. Particuology 2018, 40, 152–159. [Google Scholar] [CrossRef]
- Kabbara, H.; Ghanbaja, J.; Redjaïmia, A.; Belmonte, T. Crystal structure, morphology and formation mechanism of a novel polymorph of lead dioxide, γ-PbO2. J. Appl. Crystallogr. 2019, 52, 304–311. [Google Scholar] [CrossRef]
- Trad, M.; Nominé, A.; Noël, C.; Ghanbaja, J.; Tabbal, M.; Belmonte, T. Evidence of alloy formation in CoNi nanoparticles synthesized by nanosecond-pulsed discharges in liquid nitrogen. Plasma Process. Polym. 2020, 17, 1900255. [Google Scholar] [CrossRef]
- Saito, G.; Nakasugi, Y.; Yamashita, T.; Akiyama, T. Solution plasma synthesis of bimetallic nanoparticles. Nanotechnology 2014, 25, 135603. [Google Scholar] [CrossRef] [PubMed]
- Yatsu, S.; Takahashi, H.; Sasaki, H.; Sakaguchi, N.; Ohkubo, K.; Muramoto, T.; Watanabe, S. Fabrication of Nanoparticles by Electric Discharge Plasma in Liquid. Arch. Met. Mater. 2013, 58, 425–429. [Google Scholar] [CrossRef] [Green Version]
- Velusamy, T.; Liguori, A.; Macias-Montero, M.; Padmanaban, D.B.; Carolan, D.; Gherardi, M.; Colombo, V.; Maguire, P.; Svrcek, V.; Mariotti, D. Ultra-small CuO nanoparticles with tailored energy-band diagram synthesized by a hybrid plasma-liquid process. Plasma Process. Polym. 2017, 14, 1600224. [Google Scholar] [CrossRef] [Green Version]
- Patel, J.; Němcová, L.; Maguire, P.; Graham, W.G.; Mariotti, D. Synthesis of surfactant-free electrostatically stabilized gold nanoparticles by plasma-induced liquid chemistry. Nanotechnology 2013, 24, 245604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richmonds, C.; Sankaran, R.M. Plasma-liquid electrochemistry: Rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations. Appl. Phys. Lett. 2008, 93, 131501. [Google Scholar] [CrossRef]
- Lin, L.; Ma, X.; Li, S.; Wouters, M.; Hessel, V. Plasma-electrochemical synthesis of europium doped cerium oxide nanoparticles. Front. Chem. Sci. Eng. 2019, 13, 501–510. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, K.; Hamdan, A. Spark discharges in liquid heptane in contact with silver nitrate solution: Investigation of the synthesized particles. Plasma Process. Polym. 2021, 18, e2100083. [Google Scholar] [CrossRef]
- Li, Y.; Wen, J.-Y.; Huang, Y.-F.; Zhang, G.-J. Streamer-to-spark transitions in deionized water: Unsymmetrical structure and two-stage model. Plasma Sources Sci. Technol. 2022, 31, 07LT02. [Google Scholar] [CrossRef]
- Belmonte, T.; Kabbara, H.; Noel, C.; Pflieger, R. Analysis of Zn I emission lines observed during a spark discharge in liquid nitrogen for zinc nanosheet synthesis. Plasma Sources Sci. Technol. 2018, 27, 074004. [Google Scholar] [CrossRef]
- Hamdan, A.; Noël, C.; Ghanbaja, J.; Belmonte, T. Comparison of Aluminium Nanostructures Created by Discharges in Various Dielectric Liquids. Plasma Chem. Plasma Process. 2014, 34, 1101–1114. [Google Scholar] [CrossRef]
- Lin, Z.; Shao, G.; Liu, W.; Wang, Y.; Wang, H.; Wang, H.; Fan, B.; Lu, H.; Xu, H.; Zhang, R. In-situ TEM observations of the structural stability in carbon nanotubes, nanodiamonds and carbon nano-onions under electron irradiation. Carbon 2022, 192, 356–365. [Google Scholar] [CrossRef]
- Kondeti, V.S.S.K.; Gangal, U.; Yatom, S.; Bruggeman, P.J. Ag+ reduction and silver nanoparticle synthesis at the plasma–liquid interface by an RF driven atmospheric pressure plasma jet: Mechanisms and the effect of surfactant. J. Vac. Sci. Technol. Vac. Surf. Films 2017, 35, 061302. [Google Scholar] [CrossRef]
- Li, M.; Li, Z.; Lin, Q.; Cao, J.; Liu, F.; Kawi, S. Synthesis strategies of carbon nanotube supported and confined catalysts for thermal catalysis. Chem. Eng. J. 2022, 431, 133970. [Google Scholar] [CrossRef]
- Shoukat, R.; Khan, M.I. Carbon nanotubes/nanofibers (CNTs/CNFs): A review on state of the art synthesis methods. Microsyst. Technol. 2022, 28, 885–901. [Google Scholar] [CrossRef]
- Mitronika, M.; Profili, J.; Goullet, A.; Gautier, N.; Stephant, N.; Stafford, L.; Granier, A.; Richard-Plouet, M. TiO2–SiO2 nanocomposite thin films deposited by direct liquid injection of colloidal solution in an O2/HMDSO low-pressure plasma. J. Phys. D Appl. Phys. 2020, 54, 085206. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, X.; Guo, Z.; Miao, P.; Gong, X. Carbon dots based nanocomposite thin film for highly efficient luminescent solar concentrators. Org. Electron. 2018, 62, 284–289. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamdan, A.; Stafford, L. A Versatile Route for Synthesis of Metal Nanoalloys by Discharges at the Interface of Two Immiscible Liquids. Nanomaterials 2022, 12, 3603. https://doi.org/10.3390/nano12203603
Hamdan A, Stafford L. A Versatile Route for Synthesis of Metal Nanoalloys by Discharges at the Interface of Two Immiscible Liquids. Nanomaterials. 2022; 12(20):3603. https://doi.org/10.3390/nano12203603
Chicago/Turabian StyleHamdan, Ahmad, and Luc Stafford. 2022. "A Versatile Route for Synthesis of Metal Nanoalloys by Discharges at the Interface of Two Immiscible Liquids" Nanomaterials 12, no. 20: 3603. https://doi.org/10.3390/nano12203603
APA StyleHamdan, A., & Stafford, L. (2022). A Versatile Route for Synthesis of Metal Nanoalloys by Discharges at the Interface of Two Immiscible Liquids. Nanomaterials, 12(20), 3603. https://doi.org/10.3390/nano12203603