3D Modeling of Silver Doped ZrO2 Coupled Graphene-Based Mesoporous Silica Quaternary Nanocomposite for a Nonenzymatic Glucose Sensing Effects
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of ZrO2
2.3. Synthesis of Silver Doped ZrO2 (ZrO2-Ag)
2.4. Synthesis of ZrO2-Ag-G
2.5. Synthesis of ZrO2-Ag-G-SiO2
2.6. Preparation of ZrO2-Ag-G-SiO2 Electrode
2.7. Characterization of the Materials
2.8. Electrochemical Measurements
3. Results
3.1. Characterization of the ZrO2-Ag-G-SiO2 Sample
3.2. Electrocatalytic Activity of the ZrO2-Ag-G-SiO2 Electrode towards Glucose Sensing
3.3. Selection of Electrolytes towards ZrO2-Ag-G-SiO2 Electrode
3.4. Anti-Interference Ability of the ZrO2-Ag-G-SiO2 Sensor
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mousavi, S.M.; Hashemi, S.A.; Gholami, A.; Mazraedoost, S.; Chiang, W.H.; Arjmand, O.; Omidifar, N.; Babapoor, A. Precise blood glucose sensing by nitrogen-doped graphene quantum dots for tight control of diabetes. J. Sens. 2021, 2021, 5580203. [Google Scholar] [CrossRef]
- Tang, J.; Wei, L.; He, S.; Li, J.; Nan, D.; Ma, L.; Shen, W.; Kang, F.; Lv, R.; Huang, Z. A highly sensitive electrochemical glucose sensor based on room temperature exfoliated graphite-derived film decorated with dendritic copper. Materials 2021, 14, 5067. [Google Scholar] [CrossRef]
- Xu, M.; Zhu, Y.; Gao, S.; Zhang, Z.; Gu, Y.; Liu, X. Reduced graphene oxide-coated silica nanospheres as flexible enzymatic biosensors for detection of glucose in sweat. ACS Appl. Nano Mater. 2021, 4, 12442–12452. [Google Scholar] [CrossRef]
- Chen, H.C.; Su, W.R.; Yeh, Y.C. Functional channel of SWCNTs/Cu2O/ZnO NRs/graphene hybrid electrodes for highly sensitive nonenzymatic glucose sensors. ACS Appl. Mater. Interfaces 2020, 12, 32905–32914. [Google Scholar] [CrossRef]
- Fatema, K.N.; Liu, Y.; Cho, K.Y.; Oh, W.C. Comparative study of electrochemical biosensors based on highly efficient mesoporous ZrO2-Ag-G-SiO2 and In2O3-G-SiO2 for rapid recognition of E. coli O157: H7. ACS Omega 2020, 5, 22719–22730. [Google Scholar] [CrossRef]
- Fatema, K.N.; Zhu, L.; Cho, K.Y.; Jung, C.H.; Ullah, K.; Oh, W.C. Non-enzymatic sensing of glucose with high specificity and sensitivity based on high surface area mesoporous BiZnSbV-G-SiO2. J. Mater. Sci. Mater. Electron. 2021, 32, 8330–8346. [Google Scholar] [CrossRef]
- Fatema, K.N.; Oh, W.C. A comparative electrochemical study of non-enzymatic glucose, ascorbic acid, and albumin detection by using a ternary mesoporous metal oxide (ZrO2, SiO2 and In2 O3) modified graphene composite based biosensor. RSC Adv. 2021, 11, 4256–4269. [Google Scholar] [CrossRef]
- Fatema, K.N.; Lim, C.S.; Oh, W.C. High surface area mesoporous BiZnSbV-G-SiO2-based electrochemical biosensor for quantitative and rapid detection of microalbuminuria. J. Appl. Electrochem. 2021, 51, 1–16. [Google Scholar] [CrossRef]
- Tripathi, K.M.; Ahn, H.T.; Chung, M.; Le, X.A.; Saini, D.; Bhati, A.; Sonkar, S.K.; Kim, M.I.; Kim, T. N, S, and P-Co-doped carbon quantum dots: Intrinsic peroxidase activity in a wide pH range and its antibacterial applications. ACS Biomater. Sci. Eng. 2020, 6, 5527–5537. [Google Scholar] [CrossRef] [PubMed]
- Fatema, K.N.; Biswas, M.R.; Bang, S.H.; Cho, K.Y.; Oh, W.C. Electroanalytical characteristic of a novel biosensor designed with graphene–polymer-based quaternary and mesoporous nanomaterials. Bull. Mater. Sci. 2020, 43, 1–3. [Google Scholar] [CrossRef]
- Fatema, K.N.; Sagadevan, S.; Liu, Y.; Cho, K.Y.; Jung, C.H.; Oh, W.C. New design of mesoporous SiO2 combined In2O3-graphene semiconductor nanocomposite for highly effective and selective gas detection. J. Mater. Sci. 2020, 55, 13085–13101. [Google Scholar] [CrossRef]
- Tripathi, K.M.; Bhati, A.; Singh, A.; Gupta, N.R.; Verma, S.; Sarkar, S.; Sonkar, S.K. From the traditional way of pyrolysis to tunable photoluminescent water soluble carbon nano-onions for cell imaging and selective sensing of glucose. RSC Adv. 2016, 6, 37319–37329. [Google Scholar] [CrossRef]
- Li, X.; Liu, J.; Ji, X.; Jiang, J.; Ding, R.; Hu, Y.; Hu, A.; Huang, X. Ni/Al layered double hydroxide nanosheet film grown directly on Ti substrate and its application for a nonenzymatic glucose sensor. Sens. Actuators B Chem. 2010, 147, 241–247. [Google Scholar] [CrossRef]
- Shu, Y.; Yan, Y.; Chen, J.; Xu, Q.; Pang, H.; Hu, X. Ni and NiO nanoparticles decorated metal–organic framework nanosheets: Facile synthesis and high-performance nonenzymatic glucose detection in human serum. ACS Appl. Mater. Interfaces. 2017, 9, 22342–22349. [Google Scholar] [CrossRef]
- Farid, M.M.; Goudini, L.; Piri, F.; Zamani, A.; Saadati, F. Molecular imprinting method for fabricating novel glucose sensor: Polyvinyl acetate electrode reinforced by MnO2/CuO loaded on graphene oxide nanoparticles. Food Chem. 2016, 194, 61–67. [Google Scholar] [CrossRef]
- Yang, S.; Liu, L.; Wang, G.; Li, G.; Deng, D.; Qu, L. One-pot synthesis of Mn3O4 nanoparticles decorated with nitrogen-doped reduced graphene oxide for sensitive nonenzymatic glucose sensing. J. Electroanal. Chem. 2015, 755, 15–21. [Google Scholar] [CrossRef]
- Balamurugan, J.; Thanh, T.D.; Karthikeyan, G.; Kim, N.H.; Lee, J.H. A novel hierarchical 3D N-Co-CNT@ NG nanocomposite electrode for non-enzymatic glucose and hydrogen peroxide sensing applications. Biosens. Bioelectron. 2017, 89, 970–977. [Google Scholar] [CrossRef]
- Chung, J.S.; Hur, S.H. A highly sensitive enzyme-free glucose sensor based on Co3O4 nanoflowers and 3D graphene oxide hydrogel fabricated via hydrothermal synthesis. Sens. Actuators B Chem. 2016, 223, 76–82. [Google Scholar]
- Naikoo, G.A.; Salim, H.; Hassan, I.U.; Awan, T.; Arshad, F.; Pedram, M.Z.; Ahmed, W.; Qurashi, A. Recent advances in non-enzymatic glucose sensors based on metal and metal oxide nanostructures for diabetes management—A review. Front. Chem. 2021, 9, 786. [Google Scholar] [CrossRef]
- Cao, X.; Wang, N. A novel non-enzymatic glucose sensor modified with Fe2O3 nanowire arrays. Analyst 2011, 136, 4241–4246. [Google Scholar] [CrossRef]
- Xia, C.; Ning, W. A novel non-enzymatic electrochemical glucose sensor modified with FeOOH nanowire. Electrochem. Commun. 2010, 12, 1581–1584. [Google Scholar] [CrossRef]
- Pan, M.; Yin, Z.; Liu, K.; Du, X.; Liu, H.; Wang, S. Carbon-based nanomaterials in sensors for food safety. Nanomaterials 2019, 9, 1330. [Google Scholar] [CrossRef] [Green Version]
- Ambrosi, A.; Chua, C.K.; Bonanni, A.; Pumera, M. Electrochemistry of graphene and related materials. Chem. Rev. 2014, 114, 7150–7188. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, S.; Narayanan, T.N.; Aran, K.; Fink, K.D.; Paredes, J.; Ajayan, P.M.; Filipek, S.; Miszta, P.; Tekin, H.C.; Inci, F.; et al. Graphene–protein field effect biosensors: Glucose sensing. Mater. Today 2015, 18, 513–522. [Google Scholar] [CrossRef]
- Liu, J.; Meng, X.; Hu, Y.; Geng, D.; Banis, M.N.; Cai, M.; Li, R.; Sun, X. Controlled synthesis of zirconium oxide on graphene nanosheets by atomic layer deposition and its growth mechanism. Carbon 2013, 52, 74–82. [Google Scholar] [CrossRef]
- Gong, J.; Miao, X.; Wan, H.; Song, D. Facile synthesis of zirconia nanoparticles-decorated graphene hybrid nanosheets for an enzymeless methyl parathion sensor. Sens. Actuators B Chem. 2012, 162, 341–347. [Google Scholar] [CrossRef]
- Liao, L.; Bai, J.; Lin, Y.; Qu, Y.; Huang, Y.; Duan, X. High-Performance Top-Gated Graphene-Nanoribbon Transistors Using Zirconium Oxide Nanowires as High-Dielectric-Constant Gate Dielectrics. J. Adv. Mater. 2010, 22, 1941–1945. [Google Scholar] [CrossRef]
- Du, D.; Liu, J.; Zhang, X.; Cui, X.; Lin, Y. One-step electrochemical deposition of a graphene-ZrO2 nanocomposite: Preparation, characterization, and application for detection of organophosphorus agents. J. Mater. Chem. 2011, 21, 8032–8037. [Google Scholar] [CrossRef]
- Cho, B.H.; Ko, W.B. Preparation of graphene-ZrO2 nanocomposites by heat treatment and photocatalytic degradation of organic dyes. J. Nanosci. Nanotechnol. 2013, 13, 7625–7630. [Google Scholar] [CrossRef]
- Cho, B.; Ko, W. Preparation of ZrO2-C60 nanocomposites using heat treatment and photocatalytic degradation of organic dyes. Asian J. Chem. 2013, 25, 4577–4582. [Google Scholar] [CrossRef]
- Lee, Y.L.; Kim, S.; Park, C.; Ihm, J.; Son, Y.W. Controlling half-metallicity of graphene nanoribbons by using a ferroelectric polymer. Acs Nano 2010, 4, 1345–1350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandeep, S.; Santhosh, A.S.; Swamy, N.K.; Suresh, G.S.; Melo, J.S.; Mallu, P. Biosynthesis of silver nanoparticles using Convolvulus pluricaulis leaf extract and assessment of their catalytic, electrocatalytic and phenol remediation properties. Adv. Mater. Lett. 2016, 7, 383–389. [Google Scholar] [CrossRef]
- Rosenholm, J.M.; Meinander, A.; Peuhu, E.; Niemi, R.; Eriksson, J.E.; Sahlgren, C.; Lindén, M. Targeting of porous hybrid silica nanoparticles to cancer cells. ACS Nano. 2009, 3, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Trewyn, B.G.; Slowing, I.I.; Giri, S.; Chen, H.T.; Lin, V.S. Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol–gel process and applications in controlled release. Acc. Chem. Res. 2007, 40, 846–853. [Google Scholar] [CrossRef] [Green Version]
- Amin, B.G.; Masud, J.; Nath, M. A non-enzymatic glucose sensor based on a CoNi2 Se4/rGO nanocomposite with ultrahigh sensitivity at low working potential. J. Mater. Chem. B 2019, 7, 2338–2348. [Google Scholar] [CrossRef]
- Saraf, M.; Natarajan, K.; Mobin, S.M. Non-enzymatic amperometric sensing of glucose by employing sucrose templated microspheres of copper oxide (CuO). Dalton Trans. 2016, 45, 5833–5840. [Google Scholar] [CrossRef]
- Biswas, M.R.; Oh, W.C. Comparative study on gas sensing by a Schottky diode electrode prepared with graphene–semiconductor–polymer nanocomposites. RSC Adv. 2019, 9, 11484–11492. [Google Scholar] [CrossRef] [Green Version]
- Kwon, G.H.; Kim, T.W.; Lee, H.I.; Cho, W.C.; Kim, H. Synthesis of ZrO2 nanorods and their applicati.on as membrane materials. J. Korean Ceram. Soc. 2019, 56, 541–548. [Google Scholar] [CrossRef] [Green Version]
- Deng, Z.; Long, H.; Wei, Q.; Yu, Z.; Zhou, B.; Wang, Y.; Zhang, L.; Li, S.; Ma, L.; Xie, Y.; et al. High-performance non-enzymatic glucose sensor based on nickel-microcrystalline graphite-boron doped diamond complex electrode. Sens. Actuators B Chem. 2017, 242, 825–834. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, H.; Chen, X.; Zhang, L.; Wang, K.; Guo, J.; Huang, Z.; Zhang, B.; Huang, W.; Jin, K.; et al. The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature 2009, 460, 345. [Google Scholar]
- Zhan, B.; Liu, C.; Chen, H.; Shi, H.; Wang, L.; Chen, P.; Huang, W.; Dong, X. Free-standing electrochemical electrode based on Ni (OH) 2/3D graphene foam for nonenzymatic glucose detection. Nanoscale 2014, 6, 7424–7429. [Google Scholar] [CrossRef] [PubMed]
- Zawadzki, W. Semiconductor electrons in electric and magnetic fields. Surf. Sci. 1973, 37, 218–243. [Google Scholar] [CrossRef]
- Fatema, K.N.; Jung, C.H.; Liu, Y.; Sagadevan, S.; Cho, K.Y.; Oh, W.C. New Design of Active Material Based on YInWO4-G-SiO2 for a Urea Sensor and High Performance for Nonenzymatic Electrical Sensitivity. ACS Biomater. Sci. Eng. 2020, 6, 6981–6994. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Tripathy, N.; Ahn, M.S.; Bhat, K.S.; Mahmoudi, T.; Wang, Y.; Yoo, J.Y.; Kwon, D.W.; Yang, H.Y.; Hahn, Y.B. Highly efficient non-enzymatic glucose sensor based on CuO modified vertically grown ZnO nanorods on electrode. Sci. Rep. 2017, 7, 5715. [Google Scholar] [CrossRef] [Green Version]
- Sedighi, A.; Montazer, M.; Mazinani, S. Synthesis of wearable and flexible NiP0. 1-SnOx/PANI/CuO/cotton towards a non-enzymatic glucose sensor. Biosens. Bioelectron. 2019, 135, 192–199. [Google Scholar]
- Chen, Y.; Zhong, Q.; Wang, Y.; Yuan, C.; Qin, X.; Xu, Y. Colorimetric detection of hydrogen peroxide and glucose by exploiting the peroxidase-like activity of papain. RSC Adv. 2019, 9, 16566–16570. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Ju, P.; Zhang, D.; Han, X.; Zheng, L.; Yin, X.; Sun, C. Colorimetric detection of H2O2 using flower-like Fe 2 (MoO4)3 microparticles as a peroxidase mimic. Microchim. Acta. 2016, 183, 3025–3033. [Google Scholar] [CrossRef]
- Ma, Q.; Nakazato, K. Low-temperature fabrication of ZnO nanorods/ferrocenyl–alkanethiol bilayer electrode and its application for enzymatic glucose detection. Biosens. Bioelectron. 2014, 51, 362–365. [Google Scholar] [CrossRef]
- Luo, J.J.; Pan, S.W.; Yang, J.H.; Chang, T.L.; Lin, P.Y.; Wu, C.L.; Liu, W.F.; Huang, X.R.; Koshevoy, I.O.; Chou, P.T.; et al. Detecting glucose levels in blood plasma and artificial tear by Au (I) Complex on the carbopol polymer: A microfluidic paper-based method. Polymers 2018, 10, 1001. [Google Scholar] [CrossRef] [Green Version]
- Tomanin, P.P.; Cherepanov, P.V.; Besford, Q.A.; Christofferson, A.J.; Amodio, A.; McConville, C.F.; Yarovsky, I.; Caruso, F.; Cavalieri, F. Cobalt phosphate nanostructures for non-enzymatic glucose sensing at physiological pH. ACS Appl. Mater. 2018, 10, 42786–42795. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Ahn, M.S.; Hahn, Y.B. Fabrication of a non-enzymatic glucose sensor field-effect transistor based on vertically oriented ZnO nanorods modified with Fe2O3. Electrochem. Commun. 2017, 77, 107–111. [Google Scholar] [CrossRef]
- Zhou, Y.; Ni, X.; Ren, Z.; Ma, J.; Xu, J.; Chen, X. A flower-like NiO–SnO2 nanocomposite and its non-enzymatic catalysis of glucose. RSC Adv. 2017, 7, 45177–45184. [Google Scholar] [CrossRef] [Green Version]
№. | BET Plot | Bandgap Energy (eV) | ||
---|---|---|---|---|
ZrO2-Ag-G-SiO2 | ZrO2-Ag-G | |||
1 | Total pore volume (cm3/g) | 2.1069 [cm3(STP) g−1] | 1.9895 [cm3(STP) g−1] | ZrO2-Ag-G 2.61 |
2 | Surface area (m2/g) | 9.1703 [m2 g−1] | 8.6593 [m2 g−1] | ZrO2-Ag-G-SiO2 2.00 |
3 | Total pore volume (p/p0 = 0.990) | 0.020549 [cm3 g−1] | 0.012273 [cm3 g−1] | |
4 | Mean pore diameter | 8.9632 nm | 5.6691 nm | |
BJH Plot | ||||
ZrO2-Ag-G-SiO2 | ZrO2-Ag-G | |||
1 | Mesopore surface area (m2/g) | 8.064 [m2 g−1] | 5.8875 [m2 g−1] | |
2 | Mesopore volume (cm3/g) | 0.01969 [cm3 g−1] | 0.011075 [cm3 g−1] | |
3 | Average mesopore diameter | 3.77 nm | 3.77 nm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fatema, K.N.; Lim, C.-S.; Liu, Y.; Cho, K.-Y.; Jung, C.-H.; Oh, W.-C. 3D Modeling of Silver Doped ZrO2 Coupled Graphene-Based Mesoporous Silica Quaternary Nanocomposite for a Nonenzymatic Glucose Sensing Effects. Nanomaterials 2022, 12, 193. https://doi.org/10.3390/nano12020193
Fatema KN, Lim C-S, Liu Y, Cho K-Y, Jung C-H, Oh W-C. 3D Modeling of Silver Doped ZrO2 Coupled Graphene-Based Mesoporous Silica Quaternary Nanocomposite for a Nonenzymatic Glucose Sensing Effects. Nanomaterials. 2022; 12(2):193. https://doi.org/10.3390/nano12020193
Chicago/Turabian StyleFatema, Kamrun Nahar, Chang-Sung Lim, Yin Liu, Kwang-Youn Cho, Chong-Hun Jung, and Won-Chun Oh. 2022. "3D Modeling of Silver Doped ZrO2 Coupled Graphene-Based Mesoporous Silica Quaternary Nanocomposite for a Nonenzymatic Glucose Sensing Effects" Nanomaterials 12, no. 2: 193. https://doi.org/10.3390/nano12020193
APA StyleFatema, K. N., Lim, C. -S., Liu, Y., Cho, K. -Y., Jung, C. -H., & Oh, W. -C. (2022). 3D Modeling of Silver Doped ZrO2 Coupled Graphene-Based Mesoporous Silica Quaternary Nanocomposite for a Nonenzymatic Glucose Sensing Effects. Nanomaterials, 12(2), 193. https://doi.org/10.3390/nano12020193