Thermophysical Properties of Vegetable Oil-Based Hybrid Nanofluids Containing Al2O3-TiO2 Nanoparticles as Insulation Oil for Power Transformers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Used
2.2. Dispersion of Al2O3 and TiO2 Nanoparticles in Base Oils
2.3. Morphological and Structural Characterization
2.4. Thermal Conductivity Measurement
2.5. Dynamic Viscosity Measurement
2.6. Density Measurement
3. Results and Discussion
3.1. Stability of Nanofluids with Different Types of Vegetable Base Oil
3.2. Charcterization of Nanoparticles Using XRD and TEM
3.3. Thermal Conductivity of Base Oils and Their Hybrid
3.4. Dynamic Viscosity and Rheological Properties of Base Oils and Their Hybrids
3.5. Density of Vegetable Oil and Their Hybrids
3.6. Experipental Uncertainty and Error Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Enanv, S.I.S.; Medical, H.; Ab, S.; Bertling, S. International Electrotechnical Commission 60296. 2003. Available online: https://webstore.iec.ch/publication/14600 (accessed on 13 September 2022).
- Tenbohlen, S.; Koch, M. Aging performance and moisture solubility of vegetable oils for power transformers. IEEE Trans. Power Deliv. 2010, 25, 825–830. [Google Scholar] [CrossRef]
- Alirezaie, A.; Saedodin, S.; Esfe, M.H.; Rostamian, S.H. Investigation of rheological behavior of MWCNT (COOH-functionalized)/MgO—Engine oil hybrid nanofluids and modelling the results with artificial neural networks. J. Mol. Liq. 2017, 241, 173–181. [Google Scholar] [CrossRef]
- Fontes, D.H.; Ribatski, G.; Bandarra Filho, E.P. Experimental evaluation of thermal conductivity, viscosity and breakdown voltage AC of nanofluids of carbon nanotubes and diamond in transformer oil. Diam. Relat. Mater. 2015, 58, 115–121. [Google Scholar] [CrossRef]
- Gulzar, O.; Qayoum, A.; Gupta, R. Experimental study on stability and rheological behaviour of hybrid Al2O3-TiO2 Therminol-55 nano fluids for concentrating solar collectors. Powder Technol. 2019, 352, 436–444. [Google Scholar] [CrossRef]
- Gupta, G.; Haq, M.I.U.; Raina, A.; Shafi, W.K. Effect of epoxidation and nanoparticle addition on the rheological and tribological properties of canola oil. Proc. Inst. Mech. Eng. Part J 2021, 236, 1837–1845. [Google Scholar] [CrossRef]
- Ghasemi, J.; Jafarmadar, S.; Nazari, M. Effect of magnetic nanoparticles on the lightning impulse breakdown voltage of transformer oil. J. Magn. Magn. Mater. 2015, 389, 148–152. [Google Scholar] [CrossRef]
- Cimbala, R.; Havran, P.; Király, J.; Rajňák, M.; Kurimský, J.; Šárpataky, M.; Dolník, B.; Paulovičová, K. Dielectric response of a hybrid nanofluid containing fullerene C60 and iron oxide nanoparticles. J. Mol. Liq. 2022, 359, 119338. [Google Scholar] [CrossRef]
- Ritu, P.; Brahmin, A.; Kaur, S. A Review on Utilization of Vegetable Oils as Transformer Oils. Int. Res. J. Eng. Technol. 2021, 8, 2598–2601. [Google Scholar]
- Kamal, M.S.; Adewunmi, A.A.; Sultan, A.S.; Al-Hamad, M.F.; Mehmood, U. Recent Advances in Nanoparticles Enhanced Oil Recovery: Rheology, Interfacial Tension, Oil Recovery, and Wettability Alteration. J. Nanomater. 2017, 2017, 2473175. [Google Scholar] [CrossRef] [Green Version]
- Kamal, M.S.A.; Bashir, N.; Ahmad, M.H.; Bamalli, Z. Dielectric properties and oxidation stability assessment of vegetable-based oils as insulation for power transformers. J. Optoelectron. Adv. Mater. 2015, 17, 1582–1588. [Google Scholar]
- Madavan, R.; Saroja, S.; Karthick, A.; Murugesan, S.; Mohanavel, V.; Velmurugan, P.; Al Obaid, S.; Alfarraj, S.; Sivakumar, S. Performance analysis of mixed vegetable oil as an alternative for transformer insulation oil. Biomass Convers. Biorefinery 2022, 1–6. [Google Scholar] [CrossRef]
- Rao, P.N.; Valer, S.B.; Suman, K.N.S. Improvement of desirable thermophysical properties of soybean oil for metal cutting applications as a cutting fluid. Adv. Sci. Technol. Eng. Syst. 2020, 5, 129–134. [Google Scholar] [CrossRef]
- Deraman, M.N.; Bakar, N.A.; Aziz, N.H.A.; Chairul, I.S.; Ghani, S.A. The experimental study on the potential of waste cooking oil as a new transformer insulating oil. J. Adv. Res. Fluid Mech. Therm. Sci. 2020, 69, 74–84. [Google Scholar] [CrossRef]
- Rojas, E.E.G.; Coimbra, J.S.R.; Telis-Romero, J. Thermophysical properties of cotton, canola, sunflower and soybean oils as a function of temperature. Int. J. Food Prop. 2013, 16, 1620–1629. [Google Scholar] [CrossRef] [Green Version]
- Das, A.K.; Ch Shill, D.; Chatterjee, S. Coconut oil for utility transformers—Environmental safety and sustainability perspectives. Renew. Sustain. Energy Rev. 2022, 164, 112572. [Google Scholar] [CrossRef]
- Tiwari, R.; Agrawal, P.; Bawa, S.; Karadbhajne, V.; Agrawal, A.J. Soil contamination by waste transformer oil: A review. Mater. Today Proc. 2022. [Google Scholar] [CrossRef]
- Yu, H.; Yu, P.; Luo, Y. Renewable low-viscosity dielectrics based on vegetable oil methyl esters. J. Electr. Eng. Technol. 2017, 12, 820–829. [Google Scholar] [CrossRef]
- Katim, N.I.A.; Nasir, M.S.M.; Ishak, M.T.; Hamid, M.H.A. An investigation on rapeseed oil as potential insulating liquid. AIP Conf. Proc. 2018, 1930, 1–6. [Google Scholar] [CrossRef]
- Raeisian, L.; Niazmand, H.; Ebrahimnia-Bajestan, E.; Werle, P. Feasibility study of waste vegetable oil as an alternative cooling medium in transformers. Appl. Therm. Eng. 2019, 151, 308–317. [Google Scholar] [CrossRef]
- Sheremet, M.A. Applications of nanofluids. Nanomaterials 2021, 11, 1716. [Google Scholar] [CrossRef]
- Kanti, P.; Sharma, K.V.; Khedkar, R.S.; Rehman, T.U. Synthesis, characterization, stability, and thermal properties of graphene oxide based hybrid nanofluids for thermal applications: Experimental approach. Diam. Relat. Mater. 2022, 128, 109265. [Google Scholar] [CrossRef]
- Patel, J.; Soni, A.; Barai, D.P.; Bhanvase, B.A. A minireview on nanofluids for automotive applications: Current status and future perspectives. Appl. Therm. Eng. 2022, 219, 119428. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; Zou, P.; Grzybowski, S.; Zahn, M. Preparation of a vegetable oil-based nanofluid and investigation of its breakdown and dielectric properties. IEEE Electr. Insul. Mag. 2012, 28, 43–50. [Google Scholar] [CrossRef]
- Ghislain, M.M.; Jean-Bernard, A.; Adolphe, M.I. Effect of FeO3 nanoparticles on the thermodynamic and physico-chemical properties of nanofluid based on kernel palm oil methyl ester (KPOME). Fuel Commun. 2022, 12, 100076. [Google Scholar] [CrossRef]
- Animasaun, I.L.; Yook, S.-J.; Muhammad, T.; Mathew, A. Dynamics of ternary-hybrid nanofluid subject to magnetic flux density and heat source or sink on a convectively heated surface. Surf. Interfaces 2022, 28, 101654. [Google Scholar] [CrossRef]
- Kannaiyan, S.; Boobalan, C.; Umasankaran, A.; Ravirajan, A.; Sathyan, S.; Thomas, T. Comparison of experimental and calculated thermophysical properties of alumina/cupric oxide hybrid nanofluids. J. Mol Liq. 2017, 244, 469–477. [Google Scholar] [CrossRef]
- Minea, A.A.; Luciu, R.S. Investigations on electrical conductivity of stabilized water based Al2O3 nanofluids. Microfluid Nanofluidics 2012, 13, 977–985. [Google Scholar] [CrossRef]
- Nabil, M.; Mohamad, F.; Azmi, W.; Hamzah, W.; Hamid, K.A.; Mamat, R. Heat Transfer Performance of TiO2-SiO2 Nanofluid In Water-Ethylene Glycol Mixture. J. Mech. Eng. 2018, 5, 39–48. [Google Scholar]
- Safaei, M.R.; Goshayeshi, H.R.; Chaer, I. Solar Still Efficiency Enhancement by Using Graphene Oxide/Paraffin Nano-PCM. Energies 2019, 12, 2002. [Google Scholar] [CrossRef] [Green Version]
- Goshayeshi, H.R.; Safaei, M.R. Effect of absorber plate surface shape and glass cover inclination angle on the performance of a passive solar still. Int. J. Numer. Methods Heat Fluid Flow 2020, 30, 3183–3198. [Google Scholar] [CrossRef]
- Mert, P.; Cuce, E.; Guclu, T.; Shaik, S.; Alshahrani, S. Effect of using hybrid nanofluids as a coolant on the thermal performance of portable thermoelectric refrigerators. Sustain. Energy Technol. Assess. 2022, 53, 102685. [Google Scholar] [CrossRef]
- Chiam, H.W.; Azmi, W.H.; Usri, N.A.; Mamat, R.; Adam, N.M. Thermal conductivity and viscosity of Al2O3 nanofluids for different based ratio of water and ethylene glycol mixture. Exp. Therm. Fluid Sci. 2017, 81, 420–429. [Google Scholar] [CrossRef] [Green Version]
- Wanatasanapan, V.V.; Abdullah, M.Z.; Gunnasegaran, P. Effect of TiO2-Al2O3 nanoparticle mixing ratio on the thermal conductivity, rheological properties, and dynamic viscosity of water-based hybrid nanofluid. J. Mater. Res. Technol. 2020, 9, 13781–13792. [Google Scholar] [CrossRef]
- Fal, J.; Sobczak, J.; Stagraczyński, R.; Estellé, P.; Żyła, G. Electrical conductivity of titanium dioxide ethylene glycol-based nanofluids: Impact of nanoparticles phase and concentration. Powder Technol. 2022, 404, 117423. [Google Scholar] [CrossRef]
- Arora, N.; Gupta, M. An experimental analysis of CTAB surfactant on thermo-physical properties and stability of MWCNT/water nanofluids. Appl. Nanosci. 2022, 12, 1941–1966. [Google Scholar] [CrossRef]
- Thirugnanasambandan, T.; Alagar, M. Titanium dioxide (TiO2) Nanoparticles XRD Analyses: An Insight. arXiv 2013, arXiv:13071091. Available online: https://arxiv.org/abs/1307.1091 (accessed on 13 September 2022).
- Asokan, N.; Gunnasegaran, P.; Wanatasanappan, V.V. Experimental investigation on the thermal performance of compact heat exchanger and the rheological properties of low concentration mono and hybrid nanofluids containing Al2O3 and CuO nanoparticles. Therm. Sci. Eng. Prog. 2020, 20, 100727. [Google Scholar] [CrossRef]
- Nabil, M.F.; Azmi, W.H.; Hamid, K.A.; Mamat, R. Heat transfer and friction factor of composite TiO2-SiO2 nanofluids in water-ethylene glycol (60:40) mixture. IOP Conf. Ser. Mater. Sci. Eng. 2017, 257, 012066. [Google Scholar] [CrossRef]
- Hamid, K.A.; Azmi, W.H.; Nabil, M.F.; Mamat, R.; Sharma, K.V. Experimental investigation of thermal conductivity and dynamic viscosity on nanoparticle mixture ratios of TiO2-SiO2 nanofluids. Int. J. Heat Mass. Transf. 2018, 116, 1143–1152. [Google Scholar] [CrossRef]
- Sahid, N.; Rahman, M.; Kadirgama, K.; Maleque, M.A. Experimental investigation on properties of hybrid nanofluids (TiO2 and ZnO) in water–ethylene glycol mixture. J. Mech. Eng. Sci. 2017, 11, 3087–3094. [Google Scholar] [CrossRef]
- Ali, N.; Teixeira, J.A.; Addali, A. A Review on Nanofluids: Fabrication, Stability, and Thermophysical Properties. J. Nanomater. 2018, 2018, 6978130. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.-X.; Zhong, X.-W.; Liu, Z.-Q.; Chen, S.; Li, N. Preparation and Enhancement of Thermal Conductivity of Heat Transfer Oil-Based MoS2 Nanofluids. J. Nanomater. 2013, 2013, 270490. [Google Scholar] [CrossRef] [Green Version]
- Hemmat Esfe, M.; Alirezaie, A.; Toghraie, D. Thermal conductivity of ethylene glycol based nanofluids containing hybrid nanoparticles of SWCNT and Fe3O4 and its price-performance analysis for energy management. J. Mater. Res. Technol. 2021, 14, 1754–1760. [Google Scholar] [CrossRef]
- Mousavi, S.B.; Zeinali Heris, S.; Estellé, P. Viscosity, tribological and physicochemical features of ZnO and MoS2 diesel oil-based nanofluids: An experimental study. Fuel 2021, 293, 120481. [Google Scholar] [CrossRef]
- Khadanga, V.; Rao, K.; Ram, V.K.; Ram, N.R. Rheological Behaviour of Nano Fluid. Int. J. Res. Anal. Rev. 2019, 6, 810–813. [Google Scholar]
- Sivaraj, R.; Banerjee, S. Transport properties of non-Newtonian nanofluids and applications. Eur. Phys. J. Spec. Top. 2021, 230, 1167–1171. [Google Scholar] [CrossRef]
- Ramzan, M.; Khan, N.S.; Kumam, P. Mechanical analysis of non-Newtonian nanofluid past a thin needle with dipole effect and entropic characteristics. Sci. Rep. 2021, 11, 19378. [Google Scholar] [CrossRef]
- Ilyas, S.U.; Narahari, M.; Pendyala, R. Rheological characteristics of ultrastable diamond-thermal oil nanofluids. J. Mol. Liq. 2020, 309, 113098. [Google Scholar] [CrossRef]
- Jóźwiak, B.; Boncel, S. Rheology of ionanofluids—A review. J. Mol. Liq. 2020, 302, 113098. [Google Scholar] [CrossRef]
- Sujith, S.V.; Solanki, A.K.; Mulik, R.S. Experimental evaluation on rheological behavior of Al2O3-pure coconut oil nanofluids. J. Mol. Liq. 2019, 286, 110905. [Google Scholar] [CrossRef]
- Sajeeb, A.; Rajendrakumar, P.K. Assessment of Viscosity of Coconut-Oil-Based CeO2/CuO Hybrid Nano-lubricant Using Artificial Neural Network. In Advanced Engineering Optimization through Intelligent Techniques; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Pak, B.C.; Cho, Y.I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf. 1998, 11, 151–170. [Google Scholar] [CrossRef]
- Rafiq, M.; Lv, Y.; Li, C. A Review on Properties, Opportunities, and Challenges of Transformer Oil-Based Nanofluids. J. Nanomater. 2016, 2016, 8371560. [Google Scholar] [CrossRef]
Properties | Nanoparticles | |
---|---|---|
Al2O3 | TiO2 | |
Colour | White | White |
Size | <13 nm | <21 nm |
Purity | 99.8% | 99.5% |
Morphology | Spherical | Spherical |
Properties | Coconut Oil | Soybean Oil | Palm Oil |
---|---|---|---|
Dielectric strength (kV) | 60 | 39 | 25 |
Viscosity(mPa·s at 40 °C) | 29 | 34.5 | 29.2 |
Density (g/cm3) | 0.917 | 0.9 | 0.9 |
Pour point (°C) | 23 | −1 | 15 |
Flash point (°C) | 225 | 234 | 242 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wanatasanappan, V.V.; Rezman, M.; Abdullah, M.Z. Thermophysical Properties of Vegetable Oil-Based Hybrid Nanofluids Containing Al2O3-TiO2 Nanoparticles as Insulation Oil for Power Transformers. Nanomaterials 2022, 12, 3621. https://doi.org/10.3390/nano12203621
Wanatasanappan VV, Rezman M, Abdullah MZ. Thermophysical Properties of Vegetable Oil-Based Hybrid Nanofluids Containing Al2O3-TiO2 Nanoparticles as Insulation Oil for Power Transformers. Nanomaterials. 2022; 12(20):3621. https://doi.org/10.3390/nano12203621
Chicago/Turabian StyleWanatasanappan, Vignesh Vicki, Munirah Rezman, and Mohd Zulkifly Abdullah. 2022. "Thermophysical Properties of Vegetable Oil-Based Hybrid Nanofluids Containing Al2O3-TiO2 Nanoparticles as Insulation Oil for Power Transformers" Nanomaterials 12, no. 20: 3621. https://doi.org/10.3390/nano12203621
APA StyleWanatasanappan, V. V., Rezman, M., & Abdullah, M. Z. (2022). Thermophysical Properties of Vegetable Oil-Based Hybrid Nanofluids Containing Al2O3-TiO2 Nanoparticles as Insulation Oil for Power Transformers. Nanomaterials, 12(20), 3621. https://doi.org/10.3390/nano12203621