Structure Effect on the Response of ZnGa2O4 Gas Sensor for Nitric Oxide Applications
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chegini, H.; Naha, R.K.; Mahanti, A.; Thulasiraman, P. Process automation in an IoT–fog–cloud ecosystem: A Survey and Taxonomy. IoT 2021, 2, 92–118. [Google Scholar] [CrossRef]
- de Morais, C.M.; Sadok, D.; Kelner, J. An IoT sensor and scenario survey for data researchers. J. Braz. Comput. Soc. 2019, 25, 4. [Google Scholar] [CrossRef] [Green Version]
- Dehkordi, S.A.; Farajzadeh, K.; Rezazadeh, J.; Farahbakhsh, R.; Sandrasegaran, K.; Dehkordi, M.A. A survey on data aggregation techniques in IoT sensor networks. Wirel. Netw. 2020, 26, 1243–1263. [Google Scholar] [CrossRef]
- Sattarian, M.; Rezazadeh, J.; Farahbakhsh, R.; Bagheri, A. Indoor navigation systems based on data mining techniques in internet of things: A survey. Wirel. Netw. 2019, 25, 1385–1402. [Google Scholar] [CrossRef]
- Lashkari, B.; Rezazadeh, J.; Farahbakhsh, R.; Sandrasegaran, K. Crowdsourcing and Sensing for Indoor Localization in IoT: A Review. IEEE Sens. J. 2018, 19, 2408–2434. [Google Scholar] [CrossRef]
- Bayani, M.; Segura, A.; Alvarado, M.; Loaiza, M. IoT-based library automation and monitoring system: Developing an implementation framework of implementation. E-Ciencias La Inf. 2018, 8, 83–100. [Google Scholar] [CrossRef] [Green Version]
- Gunawan, T.S.; Yaldi, I.R.H.; Kartiwi, M.; Mansor, H. Performance Evaluation of Smart Home System using Internet of Things. Int. J. Electr. Comput. Eng. 2018, 8, 400–411. [Google Scholar] [CrossRef]
- Yang, S.; Lei, G.; Xu, H.; Lan, Z.; Wang, Z.; Gu, H. Metal Oxide Based Heterojunctions for Gas Sensors: A Review. Nanomaterials 2021, 11, 1026. [Google Scholar] [CrossRef]
- Xu, K.; Fu, C.; Gao, Z.; Wei, F.; Ying, Y.; Xu, C.; Fu, G. Nanomaterial-based gas sensors: A review. Instrum. Sci. Technol. 2017, 46, 115–145. [Google Scholar] [CrossRef]
- Kim, C.; Raja, I.S.; Lee, J.-M.; Lee, J.H.; Kang, M.S.; Lee, S.H.; Oh, J.-W.; Han, D.-W. Recent Trends in Exhaled Breath Diagnosis Using an Artificial Olfactory System. Biosensors 2021, 11, 337. [Google Scholar] [CrossRef]
- Shlomo, I.B.; Frankenthal, H.; Laor, A.; Greenhut, A.K. Detection of SARS-CoV-2 infection by exhaled breath spectral analysis: Introducing a ready-to-use point-ofcare mass screening method. J. Eclinm. 2020, 45, 101308. [Google Scholar] [CrossRef] [PubMed]
- Buszewski, B.; Kesy, M.; Ligor, T.; Amann, A. Human exhaled air analytics: Biomarkers of diseases. Biomed. Chromatogr. 2007, 21, 553–566. [Google Scholar] [CrossRef] [PubMed]
- Sberveglieri, G. Gas Sensors: Principles, Operation and Developments; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Kohl, D. Function and applications of gas sensors. J. Phys. D Appl. Phys. 2001, 34, R125–R149. [Google Scholar] [CrossRef]
- Morrison, S.R. Semiconductor gas sensors. Sens. Actuators 1981, 2, 329–341. [Google Scholar] [CrossRef]
- Pignatti, P.; Visca, D.; Loukides, S.; Märtsond, A.G.; Alffenaar, J.W.C.; Migliori, G.B.; Spanevello, A. A snapshot of exhaled nitric oxide and asthma characteristics: Experience from high to low income countries. Pulmonology 2021, 28, 44–58. [Google Scholar] [CrossRef] [PubMed]
- Global Initiative for Asthma: Global Strategy for Asthma Management and Prevention. 2020. Available online: www.ginasthma.com (accessed on 25 May 2020).
- Andrew, M.G.; Adel, H.M.; Christopher, E.B. Clinical utility of fractional exhaled nitric oxide in severe asthma management. Eur. Respir. J. 2020, 55, 1901633. [Google Scholar]
- Sy, D.Q. Clinical utility of the exhaled nitric oxide (NO) measurement with portable devices in the management of allergic airway inflammation and asthma. J. Asthma Allergy 2019, 12, 331–341. [Google Scholar]
- Available online: https://www.who.int/news-room/fact-sheets/detail/asthma (accessed on 30 July 2022).
- Wu, M.R.; Li, W.Z.; Tung, C.-Y.; Huang, C.-Y.; Chiang, Y.H.; Liu, P.L.; Horng, R.H. NO gas sensor based on ZnGa2O4 epilayer grown by metalorganic chemical vapor deposition. Sci. Rep. 2019, 9, 7459. [Google Scholar] [CrossRef] [Green Version]
- Li, W.Z.; Wu, M.R.; Tung, C.-Y.; Huang, C.Y.; Tan, C.S.; Huang, Y.S.; Chen, L.J.; Horng, R.H. Strain control of a no gas sensor based on Ga-doped ZnO epilayers. ACS Appl. Electron. Mater. 2020, 2, 1365–1372. [Google Scholar] [CrossRef]
- Strohmeier, B.R. Zinc Aluminate (ZnAl2O4) by XPS. Surf. Sci. Spectra 1994, 3, 128–134. [Google Scholar] [CrossRef]
- Zhao, C.; Jiao, T.; Chen, W.; Li, Z.; Dong, X.; Li, Z.; Diao, Z.; Zhang, Y.; Zhang, B.; Du, G. Preparation of High-Thickness n-Ga2O3 Film by MOCVD. Coatings 2022, 12, 645. [Google Scholar] [CrossRef]
- Huang, P.H.; Shen, Y.C.; Tung, C.Y.; Huang, C.Y.; Tan, C.S.; Horng, R.H. Energy Saving ZnGa2O4 Phototransistor Improved by Thermal Annealing. ACS Appl. Electron. Mater. 2020, 2, 3515–3521. [Google Scholar] [CrossRef]
- Shouli, B.; Liangyuan, C.; Dianqing, L.; WenSheng, Y.; Pengcheng, Y.; Zhiyong, L.; Aifan, C.; Liu, C.C. Different morphologies of ZnO nanorods and their sensing property. Sens. Actuators B Chem. 2010, 146, 129–137. [Google Scholar] [CrossRef]
- Lupan, O.; Ursaki, V.; Chai, G.; Chow, L.; Emelchenko, G.; Tiginyanu, I.; Gruzintsev, A.; Redkin, A. Selective hydrogen gas nanosensor using individual ZnO nanowire with fast response at room temperature. Sens. Actuators B Chem. 2010, 144, 56–66. [Google Scholar] [CrossRef]
- Lenaerts, S.; Roggen, J.; Maes, G. FT-IR characterization of tin dioxide gas sensor materials under working conditions. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1995, 51, 883–894. [Google Scholar] [CrossRef]
- Yamazoe, N.; Fuchigami, J.; Kishikawa, M.; Seiyama, T. Interactions of tin oxide surface with O2, H2O and H2. Surf. Sci. 1979, 86, 335–344. [Google Scholar] [CrossRef]
- Chang, S. Oxygen chemisorption on tin oxide: Correlation between electrical conductivity and EPR measurements. J. Vac. Sci. Technol. 1980, 17, 366–369. [Google Scholar] [CrossRef]
- Afzal, A.; Cioffi, N.; Sabbatini, L.; Torsi, L. NOx sensors based on semiconducting metal oxide nanostructures: Progress and perspectives. Sens. Actuators B Chem. 2012, 171-172, 25–42. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys. Condens. Matter 1994, 6, 8245–8257. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687, Erratum: Phys. Rev. B 1993, 48, 4978. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Tung, J.C.; Wang, D.-Y.; Chen, Y.H.; Liu, P.L. Influences of Work Function Changes in NO2 and H2S Adsorption on Pd-Doped ZnGa2O4 (111) Thin Films: First-Principles Studies. Appl. Sci. 2021, 11, 5259. [Google Scholar] [CrossRef]
- Tung, J.C.; Chiang, Y.H.; Wang, D.-Y.; Liu, P.L. Adsorption of NO2 and H2S on ZnGa2O4 (111) thin films: A first-principles density functional theory study. Appl. Sci. 2020, 10, 8822. [Google Scholar] [CrossRef]
- Dixit, H.; Tandon, N.; Cottenier, S.; Saniz, R.; Lamoen, D.; Partoens, B.; Van Speybroeck, V.; Waroquier, M. Electronic structure and band gap of zinc spinel oxides beyond LDA: ZnAl2O4, ZnGa2O4 and ZnIn2O4. New J. Phys. 2011, 13, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Yen, C.-C.; Singh, A.K.; Chang, H.; Chang, K.-P.; Chen, P.-W.; Liu, P.-L.; Wuu, D.-S. Pulsed laser deposition grown non-stoichiometry transferred ZnGa2O4 films for deep-ultraviolet applications. Appl. Surf. Sci. 2022, 597, 153700. [Google Scholar] [CrossRef]
- Liu, P.-L.; Shao, P.-T. Electronic structure and band gap engineering of ZnO-based semiconductor alloy films. Mol. Simul. 2013, 39, 1007–1012. [Google Scholar] [CrossRef]
Gas Concentration (ppm) and Corresponding Response | |||||
---|---|---|---|---|---|
Sensor Dimension (μm2) | 10 (ppm) | 5 (ppm) | 2.5 (ppm) | 1 (ppm) | 0.5 (ppm) |
60 × 200 | 5.086 | 2.489 | 1.936 | 1.638 | 1.422 |
80 × 150 | 4.003 | 2.463 | 1.856 | 1.741 | 1.306 |
120 × 100 | 1.794 | 1.792 | 1.549 | 1.453 | 1.261 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horng, R.-H.; Lin, S.-H.; Hung, D.-R.; Chao, P.-H.; Fu, P.-K.; Chen, C.-H.; Chen, Y.-C.; Shao, J.-H.; Huang, C.-Y.; Tarntair, F.-G.; et al. Structure Effect on the Response of ZnGa2O4 Gas Sensor for Nitric Oxide Applications. Nanomaterials 2022, 12, 3759. https://doi.org/10.3390/nano12213759
Horng R-H, Lin S-H, Hung D-R, Chao P-H, Fu P-K, Chen C-H, Chen Y-C, Shao J-H, Huang C-Y, Tarntair F-G, et al. Structure Effect on the Response of ZnGa2O4 Gas Sensor for Nitric Oxide Applications. Nanomaterials. 2022; 12(21):3759. https://doi.org/10.3390/nano12213759
Chicago/Turabian StyleHorng, Ray-Hua, Shu-Hsien Lin, Dun-Ru Hung, Po-Hsiang Chao, Pin-Kuei Fu, Cheng-Hsu Chen, Yi-Che Chen, Jhih-Hong Shao, Chiung-Yi Huang, Fu-Gow Tarntair, and et al. 2022. "Structure Effect on the Response of ZnGa2O4 Gas Sensor for Nitric Oxide Applications" Nanomaterials 12, no. 21: 3759. https://doi.org/10.3390/nano12213759
APA StyleHorng, R. -H., Lin, S. -H., Hung, D. -R., Chao, P. -H., Fu, P. -K., Chen, C. -H., Chen, Y. -C., Shao, J. -H., Huang, C. -Y., Tarntair, F. -G., Liu, P. -L., & Hsiao, C. -L. (2022). Structure Effect on the Response of ZnGa2O4 Gas Sensor for Nitric Oxide Applications. Nanomaterials, 12(21), 3759. https://doi.org/10.3390/nano12213759