Database Development of SiO2 Etching with Fluorocarbon Plasmas Diluted with Various Noble Gases of Ar, Kr, and Xe
Abstract
:1. Introduction
2. Experiments
2.1. Description of the Processing Chamber
2.2. Sample Preparation
2.3. Plasma Diagnostic Methods
2.3.1. Electron Density Measurement
2.3.2. Radical and Ion Density Measurement
3. Results and Discussion
3.1. Effects of Noble Gas Species
3.2. Effects of FC Precursor Flow Rate
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adamovich, I.; Baalrud, S.D.; Bogaerts, A.; Bruggeman, P.J.; Cappelli, M.; Colombo, V.; Czarnetzki, U.; Ebert, U.; Eden, J.G.; Favia, P.; et al. The 2017 Plasma Roadmap: Low Temperature Plasma Science and Technology. J. Phys. D Appl. Phys. 2017, 50, 323001. [Google Scholar] [CrossRef]
- Lee, C.G.N.; Kanarik, K.J.; Gottscho, R.A. The Grand Challenges of Plasma Etching: A Manufacturing Perspective. J. Phys. D Appl. Phys. 2014, 47, 273001. [Google Scholar] [CrossRef]
- Lee, B.J.; Efremov, A.; Kwon, K.-H. Plasma parameters, gas-phase chemistry and Si/SiO2 etching mechanisms in HBr+Cl2+O2 gas mixture: Effect of HBr/O2 mixing ratio. Vacuum 2019, 163, 110–118. [Google Scholar] [CrossRef]
- Chang, W.S.; Yook, Y.G.; You, H.S.; Park, J.H.; Kwon, D.C.; Song, M.Y.; Yoon, J.S.; Kim, D.W.; You, S.J.; Yu, D.H.; et al. A unified semi-global surface reaction model of polymer deposition and SiO2 etching in fluorocarbon plasma. Appl. Surf. Sci. 2020, 515, 145975. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, S.; Kang, H.; You, S.; Kim, C.; Chae, H. Low Global Warming C4H3F7O Isomers for Plasma Etching of SiO2 and Si3N4 Films. ACS Sustain. Chem. Eng. 2022, 10, 10537–10546. [Google Scholar] [CrossRef]
- Gholami, P.; Khataee, A.; Bhatnagar, A.; Vahid, B. Synthesis of N-Doped Magnetic WO3-x@Mesoporous Carbon Using a Diatom Template and Plasma Modification: Visible-Light-Driven Photocatalytic Activities. ACS Appl. Mater. Interfaces 2021, 13, 13072–13086. [Google Scholar] [CrossRef]
- Kim, J.-H.; Park, J.-S.; Kim, C.-K. SiO2 etching in inductively coupled plasmas using heptafluoroisopropyl methyl ether and 1,1,2,2-tetrafluoroethyl 2,2,2-trifluoroethyl ether. Appl. Surf. Sci. 2020, 508, 144787. [Google Scholar] [CrossRef]
- Khataee, A.; Gholami, P.; Sheydaei, M.; Khorram, S.; Joo, S.W. Preparation of nanostructured pyrite with N2 glow discharge plasma and the study of its catalytic performance in the heterogeneous Fenton process. New J. Chem. 2016, 40, 5221–5230. [Google Scholar] [CrossRef]
- Grill, A. Cold Plasma in Materials Fabrication; IEEE Press: Piscataway, NJ, USA, 2010; ISBN 9781475740301. [Google Scholar]
- Kondo, Y.; Miyawaki, Y.; Ishikawa, K.; Hayashi, T.; Takeda, K.; Kondo, H.; Sekine, M.; Hori, M. Hydrofluorocarbon Ion Density of Argon- or Krypton-Diluted CH2F2 Plasmas: Generation of CH2F+ and CHF2+ by Dissociative-Ionization in Charge Exchange Collisions. J. Phys. D Appl. Phys. 2015, 48, 045202. [Google Scholar] [CrossRef]
- Lin, K.-Y.; Li, C.; Engelmann, S.; Bruce, R.L.; Joseph, E.A.; Metzler, D.; Oehrlein, G.S. Achieving Ultrahigh Etching Selectivity of SiO2 over Si3N4 and Si in Atomic Layer Etching by Exploiting Chemistry of Complex Hydrofluorocarbon Precursors. J. Vac. Sci. Technol. A 2018, 36, 040601. [Google Scholar] [CrossRef]
- Gasvoda, R.J.; Zhang, Z.; Wang, S.; Hudson, E.A.; Agarwal, S. Etch Selectivity during Plasma-Assisted Etching of SiO2 and SiNx: Transitioning from Reactive Ion Etching to Atomic Layer Etching. J. Vac. Sci. Technol. A 2020, 38, 050803. [Google Scholar] [CrossRef]
- Miyake, K.; Ito, T.; Isobe, M.; Karahashi, K.; Fukasawa, M.; Nagahata, K.; Tatsumi, T.; Hamaguchi, S. Characterization of Polymer Layer Formation during SiO2/SiN Etching by Fluoro/Hydrofluorocarbon Plasmas. Jpn. J. Appl. Phys. 2014, 53, 03DD02. [Google Scholar] [CrossRef]
- Iijima, Y.; Ishikawa, Y.; Yang, C.L.; Chang, M.; Okano, H. Highly Selective SiO2 Etch Employing Inductively Coupled Hydro-Fluorocarbon Plasma Chemistry for Self Aligned Contact Etch. Jpn. J. Appl. Phys. 1997, 36, 5498–5501. [Google Scholar] [CrossRef]
- Gaboriau, F.; Cartry, G.; Peignon, M.-C.; Cardinaud, C. Selective and Deep Plasma Etching of SiO2: Comparison between Different Fluorocarbon Gases (CF4, C2F6, CHF3) Mixed with CH4 or H2 and Influence of the Residence Time. J. Vac. Sci. Technol. B 2002, 20, 1514–1521. [Google Scholar] [CrossRef]
- Tak, H.W.; Lee, H.J.; Wen, L.; Kang, B.J.; Sung, D.; Bae, J.W.; Kim, D.W.; Lee, W.; Lee, S.B.; Kim, K.; et al. Effect of Hydrofluorocarbon Structure of C3H2F6 Isomers on High Aspect Ratio Etching of Silicon Oxide. Appl. Surf. Sci. 2022, 600, 154050. [Google Scholar] [CrossRef]
- Kwon, B.S.; Kim, J.S.; Moon, H.K.; Lee, N.E. Improvement in Etch Selectivity of SiO2 to CVD Amorphous Carbon Mask in Dual-Frequency Capacitively Coupled C4F8/CH2F2/O2/Ar Plasmas. Thin Solid Film. 2010, 518, 6451–6454. [Google Scholar] [CrossRef]
- Lee, J.; Efremov, A.; Kim, K.; Kwon, K.H. Etching Characteristics of SiC in Inductively Coupled CH2F2/CF4/O2/Ar Ar Inductively Coupled Plasma: Effect of CF4/CH2F2 Mixing Ratio. J. Appl. Phys. 2016, 3, 106201. [Google Scholar] [CrossRef]
- Bai, K.H.; Chang, H.Y.; Uhm, H.S. Electron Temperature Analysis of Two-Gas-Species Inductively Coupled Plasma. Appl. Phys. Lett. 2001, 79, 1596–1598. [Google Scholar] [CrossRef] [Green Version]
- Bai, K.H.; You, S.J.; Chang, H.Y.; Uhm, H.S. Plasma Parameters Analysis of Various Mixed Gas Inductively Coupled Plasmas. Phys. Plasmas 2002, 9, 2831–2838. [Google Scholar] [CrossRef]
- Shin, H.; Zhu, W.; Economou, D.J.; Donnelly, V.M. Ion Energy Distributions, Electron Temperatures, and Electron Densities in Ar, Kr, and Xe Pulsed Discharges. J. Vac. Sci. Technol. A 2012, 30, 031304. [Google Scholar] [CrossRef]
- Cho, C.; You, K.; Kim, S.; Lee, Y.; Lee, J.; You, S. Characterization of SiO2 Etching Profiles in Pulse-Modulated Capacitively Coupled Plasmas. Materials 2021, 14, 5036. [Google Scholar] [CrossRef]
- Lee, Y.S.; Oh, S.H.; Lee, J.J.; Cho, C.H.; Kim, S.J.; You, S.J. A Quantification Method in Quadrupole Mass Spectrometer Measurement. Appl. Sci. Converg. Technol. 2021, 30, 50–53. [Google Scholar] [CrossRef]
- Seong, I.H.; Lee, J.J.; Cho, C.H.; Lee, Y.S.; Kim, S.J.; You, S.J. Characterization of SiO2 over Poly-Si Mask Etching in Ar/C4f8 Capacitively Coupled Plasma. Appl. Sci. Converg. Technol. 2021, 30, 176–182. [Google Scholar] [CrossRef]
- Lee, M.-H.; Jang, S.-H.; Chung, C.-W. Floating probe for electron temperature and ion density measurement applicable to processing plasmas. J. Appl. Phys. 2007, 101, 033305. [Google Scholar] [CrossRef] [Green Version]
- Van Nieuwenhove, R.; Van Oost, G. Novel Langmuir Probe Technique for the Real-Time Measurement of the Electron Temperature. Rev. Sci. Instrum. 1988, 59, 1053–1056. [Google Scholar] [CrossRef]
- Dawson, P.H. Quadrüpole Mass Spectrometry Its Applications; Elsevier Scientific Publishing Company: Amsterdam, The Netherlands, 1976; ISBN 0444413456. [Google Scholar]
- Kessels, W.M.M.; Leewis, C.M.; Van De Sanden, M.C.M.; Schram, D.C. Formation of Cationic Silicon Clusters in a Remote Silane Plasma and Their Contribution to Hydrogenated Amorphous Silicon Film Growth. J. Appl. Phys. 1999, 86, 4029–4039. [Google Scholar] [CrossRef] [Green Version]
- Singh, H.; Coburn, J.W.; Graves, D.B. Mass Spectrometric Detection of Reactive Neutral Species: Beam-to-Background Ratio. J. Vac. Sci. Technol. A 1999, 17, 2447–2455. [Google Scholar] [CrossRef]
- Singh, H.; Coburn, J.W.; Graves, D.B. Appearance Potential Mass Spectrometry: Discrimination of Dissociative Ionization Products. J. Vac. Sci. Technol. A 2000, 18, 299–305. [Google Scholar] [CrossRef]
- Kim, J.K.; Cho, S.I.; Kim, N.G.; Jhon, M.S.; Min, K.S.; Kim, C.K.; Yeom, G.Y. Study on the etching characteristics of amorphous carbon layer in oxygen plasma with carbonyl sulfide. J. Vac. Sci. Technol. A Vac. Surf. Film. 2013, 31, 021301. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, R.J. Microtrenching Resulting from Specular Reflection during Chlorine Etching of Silicon. J. Vac. Sci. Technol. B 1998, 16, 2102–2104. [Google Scholar] [CrossRef]
Gas Species | Atomic Mass | Ionization Threshold Energy | Electron Density | Momentum Transfer Rate | Mask Opening |
---|---|---|---|---|---|
Ar→Kr→Xe | Increase | Decrease | Increase | Increase | Increase |
Gas Species | FC Flow Rate | Radical Density | Ion Density | Trench Profile | Pattern Width | Trench Profile |
---|---|---|---|---|---|---|
Ar | Increase | Increase | Increase | Microtrenching | Microtrenching disappeared | |
Kr | Barely change | PFC—decrease HFC—increase | Etch stop | Decrease | Etch stop | |
Xe | Increase | Barely change | Narrowing | Seam-like etching |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.; Yeom, H.; Choi, D.; Kim, S.; Lee, J.; Kim, J.; Lee, H.; You, S. Database Development of SiO2 Etching with Fluorocarbon Plasmas Diluted with Various Noble Gases of Ar, Kr, and Xe. Nanomaterials 2022, 12, 3828. https://doi.org/10.3390/nano12213828
Lee Y, Yeom H, Choi D, Kim S, Lee J, Kim J, Lee H, You S. Database Development of SiO2 Etching with Fluorocarbon Plasmas Diluted with Various Noble Gases of Ar, Kr, and Xe. Nanomaterials. 2022; 12(21):3828. https://doi.org/10.3390/nano12213828
Chicago/Turabian StyleLee, Youngseok, Heejung Yeom, Daehan Choi, Sijun Kim, Jangjae Lee, Junghyung Kim, Hyochang Lee, and ShinJae You. 2022. "Database Development of SiO2 Etching with Fluorocarbon Plasmas Diluted with Various Noble Gases of Ar, Kr, and Xe" Nanomaterials 12, no. 21: 3828. https://doi.org/10.3390/nano12213828
APA StyleLee, Y., Yeom, H., Choi, D., Kim, S., Lee, J., Kim, J., Lee, H., & You, S. (2022). Database Development of SiO2 Etching with Fluorocarbon Plasmas Diluted with Various Noble Gases of Ar, Kr, and Xe. Nanomaterials, 12(21), 3828. https://doi.org/10.3390/nano12213828