Characterization of an Etch Profile at a Wafer Edge in Capacitively Coupled Plasma
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abe, H.; Yoneda, M.; Fujiwara, N. Developments of plasma etching technology for fabricating semiconductor devices. Jpn. J. Appl. Phys. 2008, 47, 1435–1455. [Google Scholar] [CrossRef]
- Shi, D.; Chen, Y.; Li, Z.; Dong, S.; Li, L.; Hou, M.; Liu, H.; Zhao, S.; Chen, X.; Wong, C.; et al. Anisotropic Charge Transport Enabling High-Throughput and High-Aspect-Ratio Wet Etching of Silicon Carbide. Small Methods 2022, 6, 2200329. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, Y.; Long, J.; Shi, D.; Chen, X.; Hou, M.; Gao, J.; Liu, H.; He, Y.; Fan, B.; et al. Achieving a sub-10 nm nanopore array in silicon by metal-assisted chemical etching and machine learing. Int. J. Extrem. Manuf. 2021, 3, 035104. [Google Scholar] [CrossRef]
- Adamovich, I. The 2017 Plasma Roadmap: Low temperature plasma science and technology. ESC J. Phys. D Appl. Phys. 2017, 50, 323001. [Google Scholar] [CrossRef]
- Oehrlein, G.S.; Metzler, D.; Li, C. Atomic Etching at the Tipping Point: An Overview. ESC J. Solid State Sci. Technol. 2015, 4, N5041. [Google Scholar] [CrossRef]
- Kaler, S.S.; Lou, Q.; Donnelly, V.M.; Economou, D.J. Atomic layer etching of silicon dioxide using alternating C4F8 and energetic Ar+ plasma beams. J. Phys. D Appl. Phys. 2017, 50, 234001. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.S.; Kim, S.J.; Lee, J.J.; Cho, C.H.; Seong, I.H.; You, S.J. Purgeless atomic layer etching of SiO2. J. Phys. D Appl. Phys. 2022, 55, 365203. [Google Scholar] [CrossRef]
- Kasternmeier, B.E.E.; Matsuo, P.H.; Oehrlein, G.S. Highly selective etching of silicon nitride over silicon and silicon dioxide. J. Vac. Sci. Technol. A 1999, 17, 3179–3184. [Google Scholar] [CrossRef] [Green Version]
- Suto, S.; Hayasaka, N.; Okano, H. Highly Selective Etching of Si3N4 to SiO2 Employing Fluorine and Chlorine Atoms Generated by Microwave Discharge. J. Electrochem. Soc. 1989, 136, 2032. [Google Scholar] [CrossRef]
- Hayashi, H.; Kurihara, K.; Sekine, M. Characterization of Highly Selective SiO2/Si3N4 Etching of high-Aspect-Ratio Holes. Jpn. J. Appl. Phys. 1996, 35, 2488. [Google Scholar] [CrossRef]
- Seman, M.; Wolden, C.A. Investigation of the role of plasma conditions on the deposition rate and electrochromic performance of tungsten oxide thin films. J. Vac. Sci. Technol. A 2003, 21, 6. [Google Scholar] [CrossRef]
- Radjenovic, B.M.; Radmilovic-Radjenovic, M.D.; Petrovicm, Z.L. Dynamics of the Profile Charging During SiO2 Etching in Plasma for High Aspect Ratio Trenches. IEEE Trans. Plasma Sci. 2008, 36, 874. [Google Scholar] [CrossRef]
- Brichon, P.; Pujo, E.D.; Mourey, O.; Joubert, O. Key plasma parameters for nanometric precision etching of Si films in chlorine discharge. J. Appl. Phys. 2015, 118, 053303. [Google Scholar] [CrossRef]
- Gopikishan, S.; Banerjee, L.; Bigkem, K.A.; Das, A.K.; Pathak, A.P.; Mahapatra, S.K. Paschen curve approach to investigate electron density and deposition rate of Cu in magnetron sputtering system. Radiat. Eff. Defects Solids 2016, 171, 999. [Google Scholar] [CrossRef]
- Cho, C.H.; You, K.H.; Kim, S.J.; Lee, Y.S.; Lee, J.J.; You, S.J. Characterization of SiO2 Etching Profiles in Pulse-Modulated Capacitively Coupled Plasmas. Materials 2021, 14, 5036. [Google Scholar] [CrossRef]
- Im, D.H.; Min, W.S.; Hong, S.J. Planar heating chuck to improve temperature uniformity of plasma processing equipment. Jpn. J. Appl. Phys. 2020, 59, 079301. [Google Scholar] [CrossRef]
- Yagisawa, T.; Shimada, T.; Makabe, T. Modeling of radial uniformity at a wafer interface in a 2f-CCP for SiO2 etching. J. Vac. Sci. Technol. B 2005, 23, 2212. [Google Scholar] [CrossRef]
- Uchida, Y. Mounting Table Structure and Method of Holding Focus Ring. U.S. Patent 9209060, 8 December 2015. [Google Scholar]
- Panagopoulos, T.; Kim, D.; Midha, V.; Economou, D.J. Three-dimensional simulation of an inductively coupled plasma reactor. J. Appl. Phys. 2002, 91, 2687. [Google Scholar] [CrossRef] [Green Version]
- Kubota, M.; Shima, T. Focus Ring. U.S. Patent 20150243488A1, 27 August 2015. [Google Scholar]
- Babaeva, N.Y.; Kushner, M.J. Penetration of plasma into the wafer-focus ring gap in capacitively coupled plasmas. J. Appl. Phys. 2007, 101, 113307. [Google Scholar] [CrossRef] [Green Version]
- Koltonski, M.E. Focus Ring Replacement Method for a Plasma Reactor, and Associated Systems and Methods. U.S. Patent 20150340209, 26 November 2015. [Google Scholar]
- Babaeva, N.Y.; Kushner, M.J. Ion energy and angular distributions into the wafer-focus ring gap in capacitively coupled discharges. J. Phys. D Appl. Phys. 2008, 41, 062004. [Google Scholar] [CrossRef]
- Tong, L. Effects of gas composition, focus ring and blocking capacitor on capacitively coupled RF Ar/H2 plasmas. Jpn. J. Appl. Phys. 2015, 54, 06GA01. [Google Scholar] [CrossRef]
- Kim, J.S.; Hur, M.Y.; Kim, H.J.; Lee, H.J. The ion kinetics at the wafer edge by the variation of geometry and permittivity of the focus ring in capacitively coupled discharges. J. Appl. Phys. 2019, 126, 233301. [Google Scholar] [CrossRef]
- Kim, D.; Economou, D.J.; Woodworth, J.R.; Miller, P.A.; Shul, R.J.; Aragon, B.P.; Hamilton, T.W.; Willison, C.G. Plasma molding over surface topography: Simulation and measurement of ion fluxes, energies and angular distributions over trenches in RF high density plasmas. IEEE Trans. Plasma Sci. 2003, 31, 691–702. [Google Scholar]
- Kim, D.; Economou, D.J. Plasma molding over surface topography: Simulation of ion flow, and energy and angular distributions over steps in RF high-density plasmas. IEEE Trans. Plasma. Sci. 2002, 30, 2048–2058. [Google Scholar]
- Xiao, Y.; Du, Y.; Smith, C.; Nam, S.K.; Lee, H.; Lee, J.-Y.; Shannon, S. Focus ring geometry influence on wafer edge voltage distribution for plasma processes. J. Vac. Sci. Technol. A. 2021, 39, 043006. [Google Scholar] [CrossRef]
- Yang, K.C.; Park, S.W.; Lee, H.S.; Kim, D.W.; Yeom, G.Y. Effect of structure and material variation of focus ring for enhanced etch resistance. Nanosci. Nanotechnol. Lett. 2017, 9, 24. [Google Scholar] [CrossRef]
- Wang, X.; Lee, H.-J.; Nam, S.K.; Kushner, M.J. Erosion of focus ring in capacitively coupled plasma etching reactor. J. Vac. Sci. Technol. A 2021, 39, 063002. [Google Scholar] [CrossRef]
- Schwartz, G.C.; Rothman, L.B.; Schopen, T.J. Competitive mechanisms in reactive ion etching in a CF4 plasma. J. Electrochem. Soc. 1979, 126, 464. [Google Scholar] [CrossRef]
- Zhang, D.; Kushner, M.J. Investigations of surface reactions during C2F6 plasma etching of SiO2 with equipment and feature scale models. J. Vac. Sci. Technol. A. 2001, 19, 524. [Google Scholar] [CrossRef] [Green Version]
- Nagarajan, R.; Prasad, K.; Ebin, L.; Narayanan, B. Development of dual-etch via tapering process for through-silicon interconnection. Sens. Actuators A 2007, 139, 323–329. [Google Scholar] [CrossRef]
- Huang, S.; Huard, C.; Shim, S.-B.; Nam, S.-K.; Song, I.-C.; Lu, S.; Kushner, M.J. Plasma etching of high aspect ratio features in SiO2 using Ar/C4F8/O2 mixtures: A computational investigation. J. Vac. Sci. Technol. A 2019, 37, 031304. [Google Scholar] [CrossRef] [Green Version]
- Sung, D.; Wen, L.; Tak, H.-W.; Lee, H.-J.; Kim, D.-W.; Yeom, G.-Y. Investigation of SiO2 etch characteristics by C6F6/Ar/O2 plasmas generated using inductively coupled plasma and capacitively coupled plasma. Materials 2022, 15, 1300. [Google Scholar] [CrossRef] [PubMed]
- Arnod, J.C.; Sawin, H.H. Charging of pattern features during plasma etching. J. Appl. Phys. 1991, 70, 5314. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seong, I.; Lee, J.; Kim, S.; Lee, Y.; Cho, C.; Lee, J.; Jeong, W.; You, Y.; You, S. Characterization of an Etch Profile at a Wafer Edge in Capacitively Coupled Plasma. Nanomaterials 2022, 12, 3963. https://doi.org/10.3390/nano12223963
Seong I, Lee J, Kim S, Lee Y, Cho C, Lee J, Jeong W, You Y, You S. Characterization of an Etch Profile at a Wafer Edge in Capacitively Coupled Plasma. Nanomaterials. 2022; 12(22):3963. https://doi.org/10.3390/nano12223963
Chicago/Turabian StyleSeong, Inho, Jinho Lee, Sijun Kim, Youngseok Lee, Chulhee Cho, Jangjae Lee, Wonnyoung Jeong, Yebin You, and Shinjae You. 2022. "Characterization of an Etch Profile at a Wafer Edge in Capacitively Coupled Plasma" Nanomaterials 12, no. 22: 3963. https://doi.org/10.3390/nano12223963
APA StyleSeong, I., Lee, J., Kim, S., Lee, Y., Cho, C., Lee, J., Jeong, W., You, Y., & You, S. (2022). Characterization of an Etch Profile at a Wafer Edge in Capacitively Coupled Plasma. Nanomaterials, 12(22), 3963. https://doi.org/10.3390/nano12223963