Highly Bright Gold Nanowires Arrays for Sensitive Detection of Urea and Urease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Instrumentation
2.2. Synthesis of Ultrabright Au NWs
2.3. Fluorescence Experiments
2.4. Detection of Urea in Human Urine Sample and Urease in Serum
3. Results
3.1. Optimization of Parameters in the Synthesis of Au NWs
3.2. Characterization and Properties of Au NWs
3.3. Design of the Fluorescence Sensing System
3.4. Urea or Urease Detection
3.5. Selectivity and Application in Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xie, Y.; Bowe, B.; Li, T.; Xian, H.; Yan, Y.; Al-Aly, Z. Higher blood urea nitrogen is associated with increased risk of incident diabetes mellitus. Kidney Int. 2018, 93, 741–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konieczna, I.; Zarnowiec, P.; Kwinkowski, M.; Kolesinska, B.; Fraczyk, J.; Kaminski, Z.; Kaca, W. Bacterial urease and its role in long-lasting human diseases. Curr. Protein Pept. Sci. 2012, 13, 789–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rho, J.H. Direct fluorometric determination of urea in urine. Clin. Chem. 1972, 18, 476–478. [Google Scholar] [CrossRef] [PubMed]
- Mackay, E.M.; Mackay, L.L. The concentration of urea in the blood of normal individuals. J. Clin. Investig. 1927, 4, 295–306. [Google Scholar] [CrossRef]
- Dutta, D.; Chandra, S.; Swain, A.; Bahadur, D. SnO2 quantum dots-reduced graphene oxide composite for enzyme-free ultrasensitive electrochemical detection of urea. Anal. Chem. 2014, 86, 5914–5921. [Google Scholar] [CrossRef]
- Lonsdale, W.; Maurya, D.; Wajrak, M.; Tay, C.; Marshall, B.J.; Alameh, K. Rapid measurement of urease activity using a potentiometric RuO2 pH sensor for detection of Helicobacter pylori. Sensor Actuat. B-Chem. 2017, 242, 1305–1308. [Google Scholar] [CrossRef]
- Kuralay, F.; Özyörük, H.; Yıldız, A. Potentiometric enzyme electrode for urea determination using immobilized urease in poly(vinylferrocenium) film. Sensor Actuat. B-Chem. 2005, 109, 194–199. [Google Scholar] [CrossRef]
- Singh, M.; Verma, N.; Garg, A.; Redhu, N. Urea biosensors. Sens. Actuat. B-Chem. 2008, 134, 345–351. [Google Scholar] [CrossRef]
- Siqueira, J., Jr.; Molinnus, D.; Beging, S.; Schoning, M. Incorporating a hybrid urease-carbon nanotubes sensitive nanofilm on capacitive field-effect sensors for urea detection. Anal. Chem. 2014, 86, 5370–5375. [Google Scholar] [CrossRef]
- Alharthi, S.; El-Naggar, M.; Abu-Saied, M.; Khattab, T.; Saleh, D. Preparation of biosensor based on triarylmethane loaded cellulose acetate xerogel for the detection of urea. Mater. Chem. Phys. 2022, 276, 125377. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, J.; Zhang, Y.; Wang, Y.; Wang, M.; Li, Z.; Wang, G.; Su, X. A pH-responsive fluorometric and colorimetric system based on silicon quantum dots and 4-nitrophenol for urease activity detection. Talanta 2022, 237, 122956. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.; Shaban, S.; Moon, B.; Pyun, D.; Kim, D. Smartphone-assisted point-of-care colorimetric biosensor for the detection of urea via pH-mediated AgNPs growth. Anal. Chim. Acta 2021, 1170, 338630. [Google Scholar] [CrossRef] [PubMed]
- Sajwan, R.; Sharma, P.; Lakshmi, G.; Solanki, P. Mercaptopropionic acid capped cadmium selenide quantum dots based urea Biosensor. Mater. Lett. 2021, 305, 130794. [Google Scholar] [CrossRef]
- Wang, M.; Wang, S.; Song, X.; Liang, Z.; Su, X. Photo-responsive oxidase mimic of conjugated microporous polymer for constructing a pH-sensitive fluorescent sensor for bio-enzyme sensing. Sensor Actuat. B-Chem. 2020, 316, 128157. [Google Scholar] [CrossRef]
- Cho, J.; Keum, C.; Lee, S.; Lee, S. Aggregation-driven fluorescence quenching of imidazole-functionalized perylene diimide for urea sensing. Analyst 2020, 145, 7312–7319. [Google Scholar] [CrossRef]
- Yao, D.; Wang, H.; Lu, S.; Li, C.; Liang, A.; Wen, G.; Jiang, Z. On-signal amplification of silver nanosol RRS/SERS aptamer detection of ultratrace urea by polystyrene nanosphere catalyst. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 265, 120353. [Google Scholar] [CrossRef]
- Hu, S.; Gao, Y.; Wu, Y.; Guo, X.; Ying, Y.; Wen, Y.; Yang, H. Raman tracking the activity of urease in saliva for healthcare. Biosens. Bioelectron. 2019, 129, 24–28. [Google Scholar] [CrossRef]
- Xiong, H.; Zheng, H.; Wang, W.; Liang, J.; Wen, W.; Zhang, X.; Wang, S. A convenient purification method for silver nanoclusters and its applications in fluorescent pH sensors for bacterial monitoring. Biosens. Bioelectron. 2016, 86, 164–168. [Google Scholar] [CrossRef]
- Ding, C.; Tian, Y. Gold nanocluster-based fluorescence biosensor for targeted imaging in cancer cells and ratiometric determination of intracellular pH. Biosens. Bioelectron. 2015, 65, 183–190. [Google Scholar] [CrossRef]
- Duong, H.D.; Rhee, J.I. Development of a ratiometric fluorescent urea biosensor based on the urease immobilized onto the oxazine 170 perchlorate-ethyl cellulose membrane. Talanta 2015, 134, 333–339. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, M.; Zhang, L.; Su, X. Ratiometric fluorescence system for pH sensing and urea detection based on MoS2 quantum dots and 2, 3-diaminophenazine. Anal. Chim. Acta 2019, 1077, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Ruedas-Rama, M.; Hall, E. Analytical nanosphere sensors using quantum dot-enzyme conjugates for urea and creatinine. Anal. Chem. 2010, 82, 9043–9049. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Li, Y.; Chen, T. A highly sensitive system for urea detection by using CdSe/ZnS core-shell quantum dots. Biosens. Bioelectron. 2007, 22, 1835–1838. [Google Scholar] [CrossRef] [PubMed]
- Safitri, E.; Heng, L.; Ahmad, M.; Ling, T. Fluorescence bioanalytical method for urea determination based on water soluble ZnS quantum dots. Sens. Actuat. B-Chem. 2017, 240, 763–769. [Google Scholar] [CrossRef]
- Oymak, T.; Ertas, N.; Tamer, U. Use of water soluble and phosphorescent MPA-capped CdTe quantum dots for the detection of urea. Turk. J. Pharm. Sci. 2018, 15, 44–49. [Google Scholar] [CrossRef]
- An, J.; Hu, Y.; Yang, D.; Han, Y.; Zhang, J.; Liu, Y. pH-induced highly sensitive fluorescence detection of urea and urease based on carbon dots-based nanohybrids. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 269, 120705. [Google Scholar] [CrossRef]
- Shi, F.; Shang, D.; Wang, Z. An rGQD/chitosan nanocomposite-based pH-sensitive probe: Application to sensing in urease activity assays. New J. Chem. 2019, 43, 13398–13407. [Google Scholar] [CrossRef]
- Shao, T.; Zhang, P.; Tang, L.; Zhuo, S.; Zhu, C. Highly sensitive enzymatic determination of urea based on the pH-dependence of the fluorescence of graphene quantum dots. Microchim. Acta 2015, 182, 1431–1437. [Google Scholar] [CrossRef]
- Qu, F.; Chen, Y.; Jiang, D.; Zhao, X.E. pH-modulated aggregation-induced emission of Au/Cu nanoclusters and its application to the determination of urea and dissolved ammonia. Mikrochim. Acta 2021, 188, 113. [Google Scholar] [CrossRef]
- Qu, F.; Wang, B.; Li, K.; You, J.; Han, W. Copper nanoclusters@Al3+ complexes with strong and stable aggregation-induced emission for application in enzymatic determination of urea. Mikrochim. Acta 2020, 187, 457. [Google Scholar] [CrossRef]
- Deng, H.; Wu, G.; Zou, Z.; Peng, H.; Liu, A.; Lin, X.; Xia, X.; Chen, W. pH-Sensitive gold nanoclusters: Preparation and analytical applications for urea, urease, and urease inhibitor detection. Chem. Commun. 2015, 51, 7847–7850. [Google Scholar] [CrossRef] [PubMed]
- Goswami, N.; Yao, Q.; Luo, Z.; Li, J.; Chen, T.; Xie, J. Luminescent metal nanoclusters with aggregation-induced emission. J. Phys. Chem. Lett. 2016, 7, 962–975. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wu, Z.; Tian, Y.; Li, Y.; Ai, L.; Li, T.; Zou, H.; Liu, Y.; Zhang, X.; Zhang, H.; et al. Engineering the self-assembly induced emission of Cu nanoclusters by Au(I) doping. ACS Appl. Mater. Interfaces 2017, 9, 24899–24907. [Google Scholar] [CrossRef]
- Si, K.J.; Sikdar, D.; Chen, Y.; Eftekhari, F.; Xu, Z.; Tang, Y.; Xiong, W.; Guo, P.; Zhang, S.; Lu, Y.; et al. Giant plasmene nanosheets, nanoribbons, and origami. ACS Nano 2014, 8, 11086–11093. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Du, Y.; Liu, J.; Yao, Q.; Chen, T.; Cao, Y.; Zhang, H.; Xie, J. Aurophilic interactions in the self-assembly of gold nanoclusters into nanoribbons with enhanced luminescence. Angew. Chem. Int. Ed. Engl. 2019, 58, 8139–8144. [Google Scholar] [CrossRef]
- Kang, X.; Wang, S.; Song, Y.; Jin, S.; Sun, G.; Yu, H.; Zhu, M. Bimetallic Au2 Cu6 nanoclusters: Strong luminescence induced by the aggregation of Copper(I) complexes with Gold (0) Species. Angew. Chem. Int. Ed. Engl. 2016, 55, 3611–3614. [Google Scholar] [CrossRef]
- Jia, X.; Yang, X.; Li, J.; Li, D.; Wang, E. Stable Cu nanoclusters: From an aggregation-induced emission mechanism to biosensing and catalytic applications. Chem. Commun. 2014, 50, 237–239. [Google Scholar] [CrossRef]
- Ni, W.; Qiu, Y.; Li, M.; Zheng, J.; Sun, R.; Zhan, S.; Ng, S.; Li, D. Metallophilicity-driven dynamic aggregation of a phosphorescent gold(I)-silver(I) cluster prepared by solution-based and mechanochemical approaches. J. Am. Chem. Soc. 2014, 136, 9532–9535. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, J.; Gao, Y.; Liu, H.; Li, T.; Zou, H.; Wang, Z.; Zhang, K.; Wang, Y.; Zhang, H.; et al. Assembly-induced enhancement of Cu nanoclusters luminescence with mechanochromic property. J. Am. Chem. Soc. 2015, 137, 12906–12913. [Google Scholar] [CrossRef]
- Rival, J.; Nonappa; Shibu, E. Light-triggered reversible supracolloidal self-assembly of precision gold nanoclusters. Acs Appl. Mater. Interfaces 2020, 12, 14569–14577. [Google Scholar] [CrossRef]
- Hong, X.; Tan, C.; Liu, J.; Yang, J.; Wu, X.J.; Fan, Z.; Luo, Z.; Chen, J.; Zhang, X.; Chen, B.; et al. AuAg nanosheets assembled from ultrathin AuAg nanowires. J. Am. Chem. Soc. 2015, 137, 1444–1447. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Karan, N.; Shin, K.; Bootharaju, M.; Nah, S.; Chae, S.; Baek, W.; Lee, S.; Kim, J.; Son, Y.; et al. Highly fluorescent gold cluster assembly. J. Am. Chem. Soc. 2021, 143, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Sun, P.; Wang, Z.; Li, H.; Yu, L.; Sun, D.; Chen, M.; Bi, Y.; Xin, X.; Hao, J. Metal-organic gels from silver nanoclusters with aggregation-induced emission and fluorescence-to-phosphorescence switching. Angew. Chem. Int. Ed. Engl. 2020, 59, 9922–9927. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.; Doong, R. Simultaneous determination of pH, urea, acetylcholine and heavy metals using array-based enzymatic optical biosensor. Biosens. Bioelectron. 2005, 20, 1796–1804. [Google Scholar] [CrossRef]
- Pizzariello, A.; Stredansky, M.; Stredanska, S.; Miertus, S. Urea biosensor based on pH-sensing with hematein as a pH-sensitive redox mediator. Talanta 2001, 54, 763–772. [Google Scholar] [CrossRef]
- Deng, H.; Hong, G.; Lin, F.; Liu, A.; Xia, X.; Chen, W. Colorimetric detection of urea, urease, and urease inhibitor based on the peroxidase-like activity of gold nanoparticles. Anal. Chim. Acta 2016, 915, 74–80. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Q.; Huang, H.; Ren, C.; Ouyang, S.; Zhao, Q. L-noradrenaline functionalized near-infrared fluorescence CdSeTe probe for the determination of urea and bioimaging of HepG2 Cells. Talanta 2017, 171, 16–24. [Google Scholar] [CrossRef]
- Deng, H.; Li, K.; Zhuang, Q.; Peng, H.; Zhuang, Q.; Liu, A.; Xia, X.; Chen, W. An ammonia-based etchant for attaining copper nanoclusters with green fluorescence emission. Nanoscale 2018, 10, 6467–6473. [Google Scholar] [CrossRef]
- An, J.; Chen, M.; Liu, G.; Hu, Y.; Chen, R.; Lyu, Y.; Sharma, S.; Liu, Y. Water-stable perovskite-on-polymer fluorescent microspheres for simultaneous monitoring of pH, urea, and urease. Anal. Bioanal. Chem. 2021, 413, 1739–1747. [Google Scholar] [CrossRef]
Sample | Added (μM) | Found (μM) | Recovery (%) | RSD (n = 3, %) |
---|---|---|---|---|
Urine 1 | 0.00 | 22.41 | ||
20.00 | 42.80 | 102.0 | 0.9 | |
40.00 | 60.71 | 95.8 | 2.4 | |
Urine 2 | 0.00 | 24.14 | ||
20.00 | 45.43 | 106.5 | 1.5 | |
40.00 | 65.33 | 103.0 | 1.6 |
Sample | Added (U/L) | Found (U/L) | Recovery (%) | RSD (n = 3, %) |
---|---|---|---|---|
Serum 1 | 0 | 0.00 | ||
2.00 | 2.02 | 101.0 | 1.5 | |
4.00 | 6.01 | 100.0 | 1.1 | |
Serum 2 | 0.00 | 0.00 | ||
2.00 | 2.10 | 105.0 | 2.0 | |
4.00 | 5.92 | 98.7 | 2.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhao, A.; Wang, J.; Yu, J.; Xiao, F.; Sun, H. Highly Bright Gold Nanowires Arrays for Sensitive Detection of Urea and Urease. Nanomaterials 2022, 12, 4023. https://doi.org/10.3390/nano12224023
Li Y, Zhao A, Wang J, Yu J, Xiao F, Sun H. Highly Bright Gold Nanowires Arrays for Sensitive Detection of Urea and Urease. Nanomaterials. 2022; 12(22):4023. https://doi.org/10.3390/nano12224023
Chicago/Turabian StyleLi, Yan, Aowei Zhao, Jieqiong Wang, Jieyu Yu, Fei Xiao, and Hongcheng Sun. 2022. "Highly Bright Gold Nanowires Arrays for Sensitive Detection of Urea and Urease" Nanomaterials 12, no. 22: 4023. https://doi.org/10.3390/nano12224023
APA StyleLi, Y., Zhao, A., Wang, J., Yu, J., Xiao, F., & Sun, H. (2022). Highly Bright Gold Nanowires Arrays for Sensitive Detection of Urea and Urease. Nanomaterials, 12(22), 4023. https://doi.org/10.3390/nano12224023