Self-Powered Nitrogen Dioxide Sensor Based on Pd-Decorated ZnO/MoSe2 Nanocomposite Driven by Triboelectric Nanogenerator
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Material Synthesis
2.3. Sensor Assembly
2.4. Characterization Instrument
3. Results and Discussion
3.1. Characterizations of TENG
3.2. Sample Characterization
3.3. Sensing Properties
3.4. Wearable Practical Application
4. NO2 Sensing Mechanism
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, H.; Xu, Y.; Zhang, X.; Zhao, W.; Ming, A.; Wei, F. Enhanced NO2 sensing properties of Pt/WO3 films grown by glancing angle deposition. Ceram. Int. 2020, 46, 21388–21394. [Google Scholar] [CrossRef]
- Zhang, C.; Huan, Y.; Sun, D.; Lu, Y. Synthesis and NO2 sensing performances of CuO nanoparticles loaded In2O3 hollow spheres. J. Alloys Compd. 2020, 842, 155857. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, J.; Wang, X.; Zeng, D.; Xie, C. Enhancing room-temperature NO2 sensing properties via forming heterojunction for NiO-rGO composited with SnO2 nanoplates. Sens. Actuators B 2017, 243, 1010–1019. [Google Scholar] [CrossRef]
- Khojier, K.; Savaloni, H.; Habashi, N.; Sadi, M.H. On the influence of temperature gradient of annealing process on the nano-structure and sensing properties of WO3 thin films to NO2 gas and relative humidity. Mater. Sci. Semicond. Process. 2016, 41, 177–183. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, D.; Yang, Y.; Mi, Q.; Zhang, J.; Yu, L. Multifunctional latex/polytetrafluoroethylene-based triboelectric nanogenerator for self-powered organ-like MXene/metal−organic framework-derived CuO nanohybrid ammonia sensor. ACS Nano 2021, 15, 2911–2919. [Google Scholar] [CrossRef]
- Cheng, Z.; Song, L.; Ren, X.; Zheng, Q.; Xu, J. Novel lotus root slice-like self-assembled In2O3 microspheres: Synthesis and NO2-sensing properties. Sens. Actuators B 2015, 176, 258–263. [Google Scholar] [CrossRef]
- Hermawan, A.; Septiani, N.; Taufik, A.; Yuliarto, B.; Suyatman; Yin, S. Advanced strategies to improve performances of molybdenum-based gas sensors. Nano-Micro Lett. 2021, 13, 207. [Google Scholar] [CrossRef]
- Fan, X.; He, J.; Mu, J.; Qian, J.; Zhang, N.; Yang, C.; Hou, X.; Geng, W.; Wang, X.; Chou, X. Triboelectric-electromagnetic hybrid nanogenerator driven by wind for self-powered wireless transmission in Internet of Things and self-powered wind speed sensor. Nano Energy 2020, 68, 104319. [Google Scholar] [CrossRef]
- Fan, F.; Tian, Z.; Wang, Z. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334. [Google Scholar] [CrossRef]
- Wang, S.; Xie, G.; Tai, H.; Su, Y.; Yang, B.; Zhang, Q.; Du, X.; Jiang, Y. Ultrasensitive flexible self-powered ammonia sensor based on triboelectric nanogenerator at room temperature. Nano Energy 2018, 51, 231–240. [Google Scholar] [CrossRef]
- Han, W.; He, H.; Zhang, L.; Dong, C.; Zeng, H.; Dai, Y.; Xing, L.; Zhang, Y. A self-powered wearable noninvasive electronic-skin for perspiration analysis based on piezo-biosensing unit matrix of enzyme/ZnO nanoarrays. ACS Appl. Mater. Interfaces 2017, 9, 29526–29537. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zhou, L.; Cui, S.; Gao, Y.; Li, S.; Zhao, Z.; Yi, Z.; Zou, H.; Fan, Y.; Wang, J.; et al. Standardized measurement of dielectric materials intrinsic triboelectric charge density through the suppression of air breakdown. Nat. Commun. 2022, 13, 6019. [Google Scholar] [CrossRef] [PubMed]
- Seung, W.; Yoon, H.J.; Kim, T.Y.; Ryu, H.; Kim, J.; Lee, J.H.; Lee, J.H.; Kim, S.; Park, Y.K.; Park, Y.J.; et al. Boosting power-generating performance of triboelectric nanogenerators via artificial control of ferroelectric polarization and dielectric properties. Adv. Energy Mater. 2017, 7, 1600988. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, D.; Zhang, B.; Wang, D.; Tang, M. Wearable pressure sensor array with layer-by-layer assembled MXene nanosheets/Ag nanoflowers for motion monitoring and human–machine Interfaces. ACS Appl. Mater. Interfaces 2022, 14, 48907–48916. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, D.; Chen, X.; Zhang, H.; Tang, M.; Wang, J. Multifunctional respiration-driven triboelectric nanogenerator for self-powered detection of formaldehyde in exhaled gas and respiratory behavior. Nano Energy 2022, 102, 107711. [Google Scholar] [CrossRef]
- Jiang, C.; Wu, C.; Li, X.; Yao, Y.; Lan, L.; Zhao, F.; Ye, Z.; Ying, Y.; Ping, J. All-electrospun flexible triboelectric nanogenerator based on metallic MXene nanosheets. Nano Energy 2019, 59, 268–276. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, D.; Tang, M.; Zhang, H.; Sun, T.; Yang, C.; Mao, R.; Li, K.; Wang, J. Ethylene chlorotrifluoroethylene/hydrogel-based liquid-solid triboelectric nanogenerator driven self-powered MXene-based sensor system for marine environmental monitoring. Nano Energy 2022, 100, 107509. [Google Scholar] [CrossRef]
- Heckova, M.; Streckova, M.; Orinakova, R.; Hovancova, J.; Guboova, A.; Sopcak, T.; Kovalcikova, A.; Plesingerova, B.; Medved, D.; Szabo, J.; et al. Porous carbon fibers for effective hydrogen evolution. Appl. Surf. Sci. 2020, 506, 144955. [Google Scholar] [CrossRef]
- Diouri, N.; Baitoul, M. Effect of carbon nanotubes dispersion on morphology, internal structure and thermal stability of electrospun poly(vinyl alcohol)/carbon nanotubes nanofibers. Opt. Quantum Electron. 2014, 46, 259–269. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, D.; Li, P.; Yang, Z.; Mi, Q.; Yu, L. Electrospinning of flexible poly(vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nano-Micro Lett. 2021, 13, 57. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, D.; Mi, Q. A high-performance room temperature benzene gas sensor based on CoTiO3 covered TiO2 nanospheres decorated with Pd nanoparticles. Sens. Actuators B 2022, 350, 130830. [Google Scholar] [CrossRef]
- Li, W.; Li, X.; Chen, Y.; Li, X.; Deng, H.; Wang, T.; Huang, R.; Fan, G. Poly (vinyl alcohol)/sodium alginate/layered silicate based nanofibrous mats for bacterial inhibition. Carbohydr. Polym. 2013, 92, 2232–2238. [Google Scholar] [CrossRef] [PubMed]
- Gu, F.; Chen, H.; Han, D.; Wang, Z. Metal-organic framework derived Au@ZnO yolk-shell nanostructures and their highly sensitive detection of acetone. RSC Adv. 2016, 6, 29727–29733. [Google Scholar] [CrossRef]
- Hassan, K.; Chung, G. Catalytically activated quantum-size Pt/Pd bimetallic core–shell nanoparticles decorated on ZnO nanorod clusters for accelerated hydrogen gas detection. Sens. Actuators B 2017, 239, 824–833. [Google Scholar] [CrossRef]
- Xu, M.; Yu, R.; Guo, Y.; Chen, C.; Han, Q.; Di, J.; Song, P.; Zheng, L.; Zhang, Z.; Yan, J.; et al. New strategy towards the assembly of hierarchical heterostructures of SnO2/ZnO for NO2 detection at a ppb level. Inorg. Chem. Front. 2019, 6, 2801–2809. [Google Scholar] [CrossRef]
- Liu, H.; Guo, H.; Liu, B.H.; Liang, M.F.; Lv, Z.L.; Adair, K.R.; Sun, X.L. Few-layer MoSe2 nanosheets with expanded (002) planes confined in hollow carbon nanospheres for ultrahigh-performance Na-ion batteries. Adv. Funct. Mater. 2018, 28, 1707480. [Google Scholar] [CrossRef]
- Zhang, C.; Luo, Y.; Xu, J.; Debliquy, M. Room temperature conductive type metal oxide semiconductor gas sensors for NO2 detection. Sens. Actuators A 2019, 289, 118–133. [Google Scholar] [CrossRef]
- Fu, Y.; He, H.; Zhao, T.; Dai, Y.; Han, W.; Ma, J.; Xing, L.; Zhang, Y.; Xue, X. A self-powered breath analyzer based on PANI/PVDF piezo-gas-sensing arrays for potential diagnostics application. Nano-Micro Lett. 2018, 10, 76. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.; Xie, G.; Tai, H.; Li, S.; Yang, B.; Wang, S.; Zhang, Q.; Du, H.; Zhang, H.; Du, X.; et al. Self-powered room temperature NO2 detection driven by triboelectric nanogenerator under UV illumination. Nano Energy 2018, 47, 316–324. [Google Scholar] [CrossRef]
- Su, Y.; Wang, J.; Wang, B.; Yang, T.; Yang, B.; Xie, G.; Zhou, Y.; Zhang, S.; Tai, H.; Cai, Z.; et al. Alveolus-inspired active membrane sensors for self-powered wearable chemical sensing and breath analysis. ACS Nano 2020, 14, 6067–6075. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, D.; Wang, D.; Xu, Z.; Zhang, J. A high-stability weighing paper/polytetrafluoroethylene-based triboelectric nanogenerator for self-powered In2O3 nanocubes/SnS2 nanoflower NO2 gas sensors. J. Mater. Chem. A 2021, 9, 14495. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, D.; Guo, J.; Hu, Y.; Yang, Y.; Sun, T.; Zhang, H.; Liu, X. Multifunctional poly(vinyl alcohol)/Ag nanofibers-based triboelectric nanogenerator for self-powered MXene/tungsten oxide nanohybrid NO2 gas sensor. Nano Energy 2021, 89, 106410. [Google Scholar] [CrossRef]
- Kaufmanna, B.; Raidl, N.; Supancic, P. Investigation of schottky barriers at Pd-ZnO junctions in varistors. J. Eur. Ceram. Soc. 2020, 40, 3771–3775. [Google Scholar] [CrossRef]
- Chang, X.; Qiao, X.; Li, K.; Wang, P.; Xiong, Y.; Li, X.; Xia, F.; Xue, Q. UV assisted ppb-level acetone detection based on hollow ZnO/MoS2 nanosheets core/shell heterostructures at low temperature, Electron. Sens. Actuators B 2020, 317, 128208. [Google Scholar] [CrossRef]
- Sun, C.; Dutta, P.K. Selective detection of part per billion concentrations of ammonia using a pen semiconducting oxide heterostructure. Sens. Actuators B 2016, 226, 156–169. [Google Scholar] [CrossRef]
- Zhao, S.; Shen, Y.; Yan, X.; Zhou, P.; Yin, Y.; Lu, R.; Han, C.; Cui, B.; Wei, W. Complex-surfactant-assisted hydrothermal synthesis of one-dimensional ZnO nanorods for high-performance ethanol gas sensor. Sens. Actuators B 2019, 286, 501–511. [Google Scholar] [CrossRef]
- Kim, J.H.; Mirzaei, A.; Kim, H.W.; Kim, S.S. Low power-consumption CO gas sensors based on Au-functionalized SnO2-ZnO core-shell nanowires. Sens. Actuators B 2018, 267, 597–607. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, S.; Fei, T.; Liu, S.; Zhang, T. Construction of ZnO/SnO2 heterostructure on reduced graphene oxide for enhanced nitrogen dioxide sensitive performances at room temperature. ACS Sens. 2019, 4, 2048–2057. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Wang, D.; Zhang, X.; Yang, C.; Zhang, D. Self-Powered Nitrogen Dioxide Sensor Based on Pd-Decorated ZnO/MoSe2 Nanocomposite Driven by Triboelectric Nanogenerator. Nanomaterials 2022, 12, 4274. https://doi.org/10.3390/nano12234274
Wang W, Wang D, Zhang X, Yang C, Zhang D. Self-Powered Nitrogen Dioxide Sensor Based on Pd-Decorated ZnO/MoSe2 Nanocomposite Driven by Triboelectric Nanogenerator. Nanomaterials. 2022; 12(23):4274. https://doi.org/10.3390/nano12234274
Chicago/Turabian StyleWang, Weiwei, Dongyue Wang, Xixi Zhang, Chunqing Yang, and Dongzhi Zhang. 2022. "Self-Powered Nitrogen Dioxide Sensor Based on Pd-Decorated ZnO/MoSe2 Nanocomposite Driven by Triboelectric Nanogenerator" Nanomaterials 12, no. 23: 4274. https://doi.org/10.3390/nano12234274
APA StyleWang, W., Wang, D., Zhang, X., Yang, C., & Zhang, D. (2022). Self-Powered Nitrogen Dioxide Sensor Based on Pd-Decorated ZnO/MoSe2 Nanocomposite Driven by Triboelectric Nanogenerator. Nanomaterials, 12(23), 4274. https://doi.org/10.3390/nano12234274