Synthesis of Copper Nanostructures for Non-Enzymatic Glucose Sensors via Direct-Current Magnetron Sputtering
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Preparation of the Non-Enzymatic Glucose Electrodes
2.3. Characterization of the Non-Enzymatic Glucose Electrodes
2.4. Electrochemical Investigations
3. Results and Discussion
3.1. Characterization of Cu Nanocolumns
3.2. Electro-Oxidation of Glucose on Cu Nanocolumns
3.3. Amperometric Response to Glucose
3.4. Selectivity towards Glucose
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loke, A.; World Health Organization. Diabetes Fact Sheet. 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 16 September 2022).
- Espro, C.; Donato, N.; Galvagno, S.; Aloisio, D.; Leonardi, S.G.; Neri, G. CuO Nanowires-Based Electrodes for Glucose Sensors. Chem. Eng. Trans. 2014, 41, 415–420. [Google Scholar] [CrossRef]
- Clark, L.C.; Lyons, C. Electrode Systems for Continuous Monitoring in Cardiovascular Surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.; Elizabeth, Q. Glucose Oxidase: An Ideal Enzyme. Biosens. Bioelectron. 2016, 5663, 165–185. [Google Scholar] [CrossRef]
- Zhang, Y.; Su, L.; Manuzzi, D.; de los Monteros, H.V.E.; Jia, W.; Huo, D.; Hou, C.; Lei, Y. Ultrasensitive and Selective Non-Enzymatic Glucose Detection Using Copper Nanowires. Biosens. Bioelectron. 2012, 31, 426–432. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Gao, X.; Gao, Z.; Chen, Y. High Reproducibility and Sensitivity of Bifacial Copper Nanowire Array for Detection of Glucose. Prog. Nat. Sci. Mater. Int. 2017, 27, 311–315. [Google Scholar] [CrossRef]
- Mihai, G.; Roşoiu, S.; Costovici, Ş.; Anicăi, L.; Enăchescu, M. Synthesis of Copper Nanowires Using Aqueous and Ionic Liquid Electrolytes for Electrochemical Detection. UPB Sci. Bull. Ser. B Chem. Mater. Sci. 2019, 81, 3–18. [Google Scholar]
- Ravi Kumar, D.V.; Woo, K.; Moon, J. Promising Wet Chemical Strategies to Synthesize Cu Nanowires for Emerging Electronic Applications. Nanoscale 2015, 7, 17195–17210. [Google Scholar] [CrossRef] [PubMed]
- Na, W.; Lee, J.; Jun, J.; Kim, W.; Kim, Y.K.; Jang, J. Highly Sensitive Copper Nanowire Conductive Electrode for Nonenzymatic Glucose Detection. J. Ind. Eng. Chem. 2019, 69, 358–363. [Google Scholar] [CrossRef]
- Huang, T.K.; Lin, K.W.; Tung, S.P.; Cheng, T.M.; Chang, I.C.; Hsieh, Y.Z.; Lee, C.Y.; Chiu, H.T. Glucose Sensing by Electrochemically Grown Copper Nanobelt Electrode. J. Electroanal. Chem. 2009, 636, 123–127. [Google Scholar] [CrossRef]
- Khan, M.; Nagal, V.; Nakate, U.T.; Khan, M.R.; Khosla, A.; Ahmad, R. Engineered CuO Nanofibers with Boosted Non-Enzymatic Glucose Sensing Performance. J. Electrochem. Soc. 2021, 168, 8. [Google Scholar] [CrossRef]
- Huang, F.; Zhong, Y.; Chen, J.; Li, S.; Li, Y.; Wang, F.; Feng, S. Nonenzymatic Glucose Sensor Based on Three Different CuO Nanomaterials. Anal. Methods 2013, 5, 3050–3055. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.; Xin, Y.; Zhang, Z. Sensitive Electrochemical Nonenzymatic Glucose Sensing Based on Anodized CuO Nanowires on Three-Dimensional Porous Copper Foam. Sci. Rep. 2015, 5, 16115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Dong, Z.; Li, Y.; Li, J.; Wang, J.; Yang, H.; Li, S.; Guo, S.; Jin, J.; Li, R. High Performance Non-Enzymatic Glucose Biosensor Based on Copper Nanowires-Carbon Nanotubes Hybrid for Intracellular Glucose Study. Sens. Actuators B Chem. 2013, 182, 618–624. [Google Scholar] [CrossRef]
- Ju, L.; Wu, G.; Lu, B.; Li, X.; Wu, H.; Liu, A. Non-Enzymatic Amperometric Glucose Sensor Based on Copper Nanowires Decorated Reduced Graphene Oxide. Electroanalysis 2016, 28, 2543–2551. [Google Scholar] [CrossRef] [Green Version]
- Anand, V.K.; Goyal, R.; Virdi, G.S. Copper Nanowires/Reduced Graphene Oxide Nanocomposite Based Non-Enzymatic Glucose Sensor. In Proceedings of the 2020 International Conference on Advances in Computing, Communication & Materials (ICACCM), Dehradun, India, 21–22 August 2020; pp. 105–109. [Google Scholar] [CrossRef]
- Phetsang, S.; Kidkhunthod, P.; Chanlek, N.; Jakmunee, J.; Mungkornasawakul, P.; Ounnunkad, K. Copper/Reduced Graphene Oxide Film Modified Electrode for Non-Enzymatic Glucose Sensing Application. Sci. Rep. 2021, 11, 9302. [Google Scholar] [CrossRef]
- Garcia-Garcia, F.J.; Salazar, P.; Yubero, F.; González-Elipe, A.R. Non-Enzymataic Glucose Electrochemical Sensor Made of Porous NiO Thin Films Prepared by Reactive Magnetron Sputtering at Oblique Angles. Electrochim. Acta 2016, 201, 38–44. [Google Scholar] [CrossRef]
- Navinšek, B.; Panjan, P.; Milošev, I. PVD Coatings as an Environmentally Clean Alternative to Electroplating and Electroless Processes. Surf. Coat. Technol. 1999, 116–119, 476–487. [Google Scholar] [CrossRef]
- Panwar, G. Development of Electrically Conductive Copper Thin Film by Using DC Magnetron Sputtering Process. In Proceedings of the National Conference on Recent Developments in Mechanical Engineering, Pune, India, 23–24 March 2018; pp. 1–4. [Google Scholar]
- Mattox, D.M. Handbook of Physical Vapor Deposition (PVD) Processing; Elviser: Amsterdam, The Netherlands, 2009; ISBN 9780815520375. [Google Scholar]
- Thornton, J.A. Thornton High Rate Thick Film Growth. Annu. Rev. Mater. Sci. 1977, 7, 239. [Google Scholar] [CrossRef]
- Ohring, M. Materials Science of Thin Film, 2nd ed.; Academic Press: San Diego, CA, USA, 2002; Volume 7, ISBN 2001089414. [Google Scholar]
- Craig, S.; Harding, G.L. Effects of Argon Pressure and Substrate Temperature on the Structure and Properties of Sputtered Copper Films. J. Vac. Sci. Technol. 1981, 19, 205–215. [Google Scholar] [CrossRef]
- Siampour, H.; Abbasian, S.; Moshaii, A. Copper Columnar Nanostructures Fabricated by Glancing Angle Deposition as a Robust and Scalable Method for High Sensitive Non-Enzymatic Glucose Detection. Appl. Surf. Sci. 2020, 518, 146182. [Google Scholar] [CrossRef]
- Augustin, A.; Rajendra Udupa, K.; Udaya Bhat, K. Characterization of DC Magnetron Sputtered Copper Thin Film on Aluminium Touch Surface. Trans. Indian Inst. Met. 2019, 72, 1683–1685. [Google Scholar] [CrossRef]
- Sun, J.Y.; Lee, H.R.; Oh, K.H. Columnar Grown Copper Films on Polyimides Strained beyond 100%. Sci. Rep. 2015, 5, 13791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borisevich, V.; Senchenkov, S.; Titov, D. Magnetron Sputtering of Copper on Thermosensitive Polymer Materials of the Gas Centrifuge Rotors. J. Phys. Conf. Ser. 2016, 751, 012013. [Google Scholar] [CrossRef] [Green Version]
- Hajimammadov, R.; Bykov, A.; Popov, A.; Juhasz, K.L.; Lorite, G.S.; Mohl, M.; Kukovecz, A.; Huuhtanen, M.; Kordas, K. Random Networks of Core-Shell-like Cu-Cu2O/CuO Nanowires as Surface Plasmon Resonance-Enhanced Sensors. Sci. Rep. 2018, 8, 4708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abermann, R.; Koch, R. In Situ Determination of the Structure of Thin Metal Films by Internal Stress Measurements: Structure Dependence of Silver and Copper Films on Oxygen Pressure during Deposition. Thin Solid Film. 1980, 66, 217–232. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Yin, C.; Yin, Z. Copper Nanowires in Recent Electronic Applications: Progress and Perspectives. J. Mater. Chem. C 2020, 8, 849–872. [Google Scholar] [CrossRef]
- Bhagat, M.; Anand, R.; Sharma, P.; Rajput, P.; Sharma, N.; Singh, K. Review—Multifunctional Copper Nanoparticles: Synthesis and Applications. ECS J. Solid State Sci. Technol. 2021, 10, 063011. [Google Scholar] [CrossRef]
- Org, W.E.; Wang, L.; Fu, J.; Hou, H.; Song, Y. Electrochemical Science A Facile Strategy to Prepare Cu2O/Cu Electrode as a Sensitive Enzyme-Free Glucose Sensor. Int. J. Electrochem. Sci 2012, 7, 12587–12600. [Google Scholar]
- Zheng, J.Y.; Van, T.K.; Pawar, A.U.; Kim, C.W.; Kang, Y.S. One-Step Transformation of Cu to Cu2O in Alkaline Solution. RSC Adv. 2014, 4, 18616–18620. [Google Scholar] [CrossRef]
- Liu, X.; Yang, C.; Yang, W.; Lin, J.; Liang, C.; Zhao, X. One-Pot Synthesis of Uniform Cu Nanowires and Their Enhanced Non-Enzymatic Glucose Sensor Performance. J. Mater. Sci. 2021, 56, 5520–5531. [Google Scholar] [CrossRef]
- Karim Hassaninejad-Darzi, S.; Yousefi, F. Electrocatalytic Oxidation of Glucose on the Modified Carbon Paste Electrode with Sodalite Nanozeolite for Fuel Cell. Iran. J. Hydrog. Fuel Cell 2015, 1, 47–58. [Google Scholar]
- Medhi, A.; Mohanta, D. Deciphering Highly Sensitive Non-Enzymatic Glucose Sensor Based on Nanoscale CuO/PEDOT-MoS 2 Electrodes in Chronoamperometry. ECS Adv. 2022, 1, 046504. [Google Scholar] [CrossRef]
- Sattarahmady, N.; Heli, H. A Non-Enzymatic Amperometric Sensor for Glucose Based on Cobalt Oxide Nanoparticles. J. Exp. Nanosci. 2012, 7, 529–546. [Google Scholar] [CrossRef] [Green Version]
- Viswanathan, P.; Park, J.; Kang, D.K.; Hong, J.D. Polydopamine-Wrapped Cu/Cu(II) Nano-Heterostructures: An Efficient Electrocatalyst for Non-Enzymatic Glucose Detection. Colloids Surf. A Physicochem. Eng. Asp. 2019, 580, 123689. [Google Scholar] [CrossRef]
- Khedekar, V.V.; Bhanage, B.M. Simple Electrochemical Synthesis of Cuprous Oxide Nanoparticles and Their Application as a Non-Enzymatic Glucose Sensor. J. Electrochem. Soc. 2016, 163, B248–B251. [Google Scholar] [CrossRef]
- Alam, M.M.; Howlader, M.M.R. Nonenzymatic Electrochemical Sensors via Cu Native Oxides (CuNOx) for Sweat Glucose Monitoring. Sens. Bio-Sens. Res. 2021, 34, 100453. [Google Scholar] [CrossRef]
- Reitz, E.; Jia, W.; Gentile, M.; Wang, Y.; Lei, Y. CuO Nanospheres Based Nonenzymatic Glucose Sensor. Electroanalysis 2008, 20, 2482–2486. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
State, S.; Enache, L.-B.; Potorac, P.; Prodana, M.; Enachescu, M. Synthesis of Copper Nanostructures for Non-Enzymatic Glucose Sensors via Direct-Current Magnetron Sputtering. Nanomaterials 2022, 12, 4144. https://doi.org/10.3390/nano12234144
State S, Enache L-B, Potorac P, Prodana M, Enachescu M. Synthesis of Copper Nanostructures for Non-Enzymatic Glucose Sensors via Direct-Current Magnetron Sputtering. Nanomaterials. 2022; 12(23):4144. https://doi.org/10.3390/nano12234144
Chicago/Turabian StyleState (Rosoiu), Sabrina, Laura-Bianca Enache, Pavel Potorac, Mariana Prodana, and Marius Enachescu. 2022. "Synthesis of Copper Nanostructures for Non-Enzymatic Glucose Sensors via Direct-Current Magnetron Sputtering" Nanomaterials 12, no. 23: 4144. https://doi.org/10.3390/nano12234144
APA StyleState, S., Enache, L. -B., Potorac, P., Prodana, M., & Enachescu, M. (2022). Synthesis of Copper Nanostructures for Non-Enzymatic Glucose Sensors via Direct-Current Magnetron Sputtering. Nanomaterials, 12(23), 4144. https://doi.org/10.3390/nano12234144