The Influence of Carbides on Atomic-Scale Mechanical Properties of Carbon Steel: A Molecular Dynamics Study
Abstract
:1. Introduction
2. Modeling and Simulation Methodology
3. Results and Discussions
3.1. Stress-Strain Curves of the Ferrite-Carbide Systems
3.2. Elastic Constants of the Ferrite-Carbide Systems
3.3. Effect of Carbide Type on the Microstructural Evolution
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, Z.W.; Zhang, Y.Z.; Yang, L.H. Research and Development of Low Carbon Bainite Steels. Mater. Rev. 2006, 20, 84–86. [Google Scholar]
- Speer, J.G.; Matlock, D.K. Recent developments in low-carbon sheet steels. Jom-J. Miner. Met. Mater. Soc. 2002, 54, 19–24. [Google Scholar] [CrossRef]
- Guziewski, M.; Coleman, S.P.; Weinberger, C.R. Atomistic investigation into interfacial effects on the plastic response and deformation mechanisms of the pearlitic microstructure. Acta Mater. 2019, 180, 287–300. [Google Scholar] [CrossRef]
- Phillpot, S.R.; Wolf, D.; Yip, S. Effect of atomic-level dislocation at solid interface. Mrs Bull. 1990, 15, 38–45. [Google Scholar] [CrossRef]
- Li, Y.J.; Choi, P.; Goto, S.; Borchers, C.; Raabe, D.; Kirchheim, R. Evolution of strength and microstructure during annealing of heavily cold-drawn 6.3 GPa hypereutectoid pearlitic steel wire. Acta Mater. 2012, 60, 4005–4016. [Google Scholar] [CrossRef]
- Nematollahi, G.A.; Grabowski, B.; Raabe, D.; Neugebauer, J. Multiscale description of carbon-supersaturated ferrite in severely drawn pearlitic wires. Acta Mater. 2016, 111, 321–334. [Google Scholar] [CrossRef] [Green Version]
- Hono, K.; Ohnuma, M.; Murayama, M.; Nishida, S.; Yoshie, A.; Takahashi, T. Cementite decomposition in heavily drawn pearlite steel wire. Scr. Mater. 2001, 44, 977–983. [Google Scholar] [CrossRef]
- Takahashi, J.; Tarui, T.; Kawakami, K. Three-dimensional atom probe analysis of heavily drawn steel wires by probing perpendicular to the pearlitic lamellae. Ultramicroscopy 2009, 109, 193–199. [Google Scholar] [CrossRef]
- Zhang, X.D.; Godfrey, A.; Huang, X.X.; Hansen, N.; Liu, Q. Microstructure and strengthening mechanisms in cold-drawn pearlitic steel wire. Acta Mater. 2011, 59, 3422–3430. [Google Scholar] [CrossRef]
- Zhang, X.D.; Hansen, N.; Godfrey, A.; Huang, X.X. Dislocation-based plasticity and strengthening mechanisms in sub 20 nm lamellar structures in pearlitic steel wire. Acta Mater. 2016, 114, 176–183. [Google Scholar] [CrossRef] [Green Version]
- Guo, N.; Liu, Q. Back-scattered electron imaging combined with EBSD technique for characterization of pearlitic steels. J. Microsc. 2012, 246, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Varshney, A.; Sangal, S.; Gouthama; Pramanick, A.K.; Mondal, K. Microstructural evidence of nano-carbides in medium carbon high silicon multiphase steels. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2017, 708, 237–247. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, Y.G.; Tan, Y.B.; Ji, X.M.; Xiang, S. Study on the Nucleation and Growth of Pearlite Colony and Impact Toughness of Eutectoid Steel. Metals 2019, 9, 1133. [Google Scholar] [CrossRef] [Green Version]
- Shimokawa, T.; Niiyama, T.; Okabe, M.; Sawakoshi, J. Interfacial-dislocation-controlled deformation and fracture in nanolayered composites: Toward higher ductility of drawn pearlite. Acta Mater. 2019, 164, 602–617. [Google Scholar] [CrossRef]
- Goel, S.; Joshi, S.S.; Abdelal, G.; Agrawal, A. Molecular dynamics simulation of nanoindentation of Fe3C and Fe4C. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2014, 597, 331–341. [Google Scholar] [CrossRef]
- Ghosh, P.S.; Ali, K.; Vineet, A.; Voleti, A.; Arya, A. Study of structural, mechanical and thermal properties of theta-Fe3C, o-Fe7C3 and h-Fe7C3 phases using molecular dynamics simulations. J. Alloys Compd. 2017, 726, 989–1002. [Google Scholar] [CrossRef]
- Ghaffarian, H.; Taheri, A.K.; Kang, K.; Ryu, S. Molecular dynamics simulation study of the effect of temperature and grain size on the deformation behavior of polycrystalline cementite. Scr. Mater. 2015, 95, 23–26. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Kaewtes, V.; Ratanaworabhan, P. Simple optimizations for LAMMPS. In Proceedings of the 2014 International Computer Science and Engineering Conference (ICSEC), Khon Kaen, Thailand, 30 July–1 August 2014; pp. 73–77. [Google Scholar]
- Douthwaite, R.M. Theory of dislocations. J. Mech. Work. Technol. 1984, 9, 107–110. [Google Scholar] [CrossRef]
- Fang, C.M.; van Huis, M.A.; Thijsse, B.J.; Zandbergen, H.W. Stability and crystal structures of iron carbides: A comparison between the semi-empirical modified embedded atom method and quantum-mechanical DFT calculations. Phys. Rev. B 2012, 85, 054116. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.W.; Zhao, S.; Meng, Y.; Peng, Q.; Dearden, A.K.; Huo, C.F.; Yang, Y.; Li, Y.W.; Wen, X.D. Mossbauer Spectroscopy of Iron Carbides: From Prediction to Experimental Confirmation. Sci. Rep. 2016, 6, 26184. [Google Scholar] [CrossRef] [PubMed]
- Wood, I.G.; Vocadlo, L.; Knight, K.S.; Dobson, D.P.; Marshall, W.G.; Price, G.D.; Brodholt, J. Thermal expansion and crystal structure of cementite, Fe3C, between 4 and 600 K determined by time-of-flight neutron powder diffraction. J. Appl. Crystallogr. 2004, 37, 82–90. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Kang, K.; Ryu, S. Characterization of the misfit dislocations at the ferrite/cementite interface in pearlitic steel: An atomistic simulation study. Int. J. Plast. 2016, 83, 302–312. [Google Scholar] [CrossRef]
- Guziewski, M.; Coleman, S.P.; Weinberger, C.R. Atomistic investigation into the atomic structure and energetics of the ferrite-cementite interface: The Bagaryatskii orientation. Acta Mater. 2016, 119, 184–192. [Google Scholar] [CrossRef]
- Guziewski, M.; Coleman, S.P.; Weinberger, C.R. Atomistic investigation into the mechanical properties of the ferrite-cementite interface: The Bagaryatskii orientation. Acta Mater. 2018, 144, 656–665. [Google Scholar] [CrossRef]
- Mori, H.; Ozaki, T. Neural network atomic potential to investigate the dislocation dynamics in bcc iron. Phys. Rev. Mater. 2020, 4, 040601. [Google Scholar] [CrossRef]
- Henriksson, K.O.E.; Bjorkas, C.; Nordlund, K. Atomistic simulations of stainless steels: A many-body potential for the Fe-Cr-C system. J. Phys.-Condens. Matter 2013, 25, 445401. [Google Scholar] [CrossRef] [PubMed]
- Faken, D.; Jonsson, H. Systematic analysis of local atomic structure combined with 3D computer graphics. Comput. Mater. Sci. 1994, 2, 279–286. [Google Scholar] [CrossRef]
- Stukowski, A.; Albe, K. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Model. Simul. Mater. Sci. Eng. 2010, 18, 085001. [Google Scholar] [CrossRef]
- Stukowski, A.; Bulatov, V.V.; Arsenlis, A. Automated identification and indexing of dislocations in crystal interfaces. Model. Simul. Mater. Sci. Eng 2012, 20, 085007. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2010, 18, 015012. [Google Scholar] [CrossRef]
- Czarnecki, S.; Lewinski, T. On material design by the optimal choice of Young's modulus distribution. Int. J. Solids Struct. 2017, 110, 315–331. [Google Scholar] [CrossRef]
- Zhao, M.-C.; Yin, F.; Hanamura, T.; Nagai, K.; Atrens, A. Relationship between yield strength and grain size for a bimodal structural ultrafine-grained ferrite/cementite steel. Scr. Mater. 2007, 57, 857–860. [Google Scholar] [CrossRef]
- Takaki, S.; Masumura, T.; Tsuchiyama, T. Relation between Young’s Modulus and Elastic Stiffness in Ferritic Steels. Tetsu Hagane-J. Iron Steel Inst. Jpn. 2020, 106, 91–94. [Google Scholar] [CrossRef]
- Gaillac, R.; Pullumbi, P.; Coudert, F.X. ELATE: An open-source online application for analysis and visualization of elastic tensors. J. Phys.-Condens. Matter 2016, 28, 275201. [Google Scholar] [CrossRef] [Green Version]
- Umemoto, M.; Tsuchiya, K. Fundamental properties of cementite and their present understanding. Tetsu Hagane-J. Iron Steel Inst. Jpn. 2002, 88, 11–22. [Google Scholar]
- Vergniory, M.G.; Wieder, B.J.; Elcoro, L.; Parkin, S.S.P.; Felser, C.; Bernevig, B.A.; Regnault, N. All topological bands of all nonmagnetic stoichiometric materials. Science 2022, 376, eabg9094. [Google Scholar] [CrossRef]
- Hallstedt, B.; Djurovic, D.; von Appen, J.; Dronskowski, R.; Dick, A.; Kormann, F.; Hickel, T.; Neugebauer, J. Thermodynamic properties of cementite (Fe3C). Calphad-Comput. Coupling Phase Diagr. Thermochem. 2010, 34, 129–133. [Google Scholar] [CrossRef]
- Lyubartsev, A.P.; Laaksonen, A. Calculation of effective interation potentials form radial-distribution functions: A reverse Monte-Carlo approach. Phys. Rev. E 1995, 52, 3730–3737. [Google Scholar] [CrossRef] [PubMed]
- Goel, S.; Luo, X.C.; Reuben, R.L.; Pen, H.M. Influence of temperature and crystal orientation on tool wear during single point diamond turning of silicon. Wear 2012, 284, 65–72. [Google Scholar] [CrossRef]
Formula | Space Group | Lattice/Å | Crystal System | Nsites | Volume/Å3 |
---|---|---|---|---|---|
Fe2C | Pnnm | a = 2.824, b = 4.282, c = 4.714 | orthorhombic | 6 | 56.982 |
Fe3C | Pnma | a = 4.491, b = 5.03, c = 6.739 | orthorhombic | 16 | 152.239 |
Fe4C | P-43m | a = b = c = 3.842 | cubic | 5 | 56.692 |
Fe7C3 | Pnma | a = 4.517, b = 6.857, c = 11.762 | orthorhombic | 40 | 364.342 |
Parameter | Orientation X | Orientation Y | Orientation Z |
---|---|---|---|
Bagaryatskii OR | [10]α || [100]θ | [111]α || [010]θ | (11)α || (001)θ |
Near Bagaryatskii OR | ]α || [100]θ | [111]α || [010]θ | ()α || (001)θ |
Pitsch-Petch OR | ]α || [100]θ | ]α || [010]θ | [521]α || (001)θ |
Near Pitsch-Petch OR | ]α || [100]θ | [13]α || [010]θ | [134 53 27]α || (001)θ |
Isaichev OR | ]α || [100]θ | [111]α || [010]θ | ]α || (001)θ |
Model | Fe2C Model | Fe3C Model | Fe4C Model | Fe7C3 Model |
---|---|---|---|---|
ΔE/(ev/atom) | 0.0497 | 0.3689 | 0.5476 | 0.1970 |
Constants | Fe2C Model | Fe3C Model | Fe4C Model | Fe7C3 Model |
---|---|---|---|---|
C11 | 373.95 | 311.43 | 250.99 | 306.65 |
C22 | 347.23 | 292.31 | 211.72 | 286.32 |
C33 | 290.61 | 305.73 | 254.79 | 302.82 |
C12 | 111.54 | 111.06 | 93.55 | 119.99 |
C13 | 69.51 | 103.16 | 93.83 | 110.05 |
C23 | 72.48 | 101.74 | 94.41 | 119.82 |
C44 | 48.62 | 62.59 | 58.59 | 69.61 |
C55 | 71.36 | 60.15 | 47.54 | 59.27 |
C66 | 83.04 | 78.53 | 56.88 | 78.51 |
Constants | Fe2C Model | Fe3C Model | Fe4C Model | Fe7C3 Model |
---|---|---|---|---|
B/GPa | 199.01 | 177.85 | 146.03 | 182.21 |
G/GPa | 81.654 | 77.63 | 66.642 | 79.098 |
γ | 0.3195 | 0.3095 | 0.3019 | 0.3104 |
E/GPa | 215.49 | 203.30 | 173.53 | 207.30 |
Cauchy pressure/GPa | 62.92 | 48.47 | 34.96 | 50.38 |
Parameter | Fe2C | Fe3C | Fe4C | Fe7C3 |
---|---|---|---|---|
Formation energy/(ev/atom) | 0.226 | 0.055 | 0.514 | 0.178 |
Density/(g/cm3) | 7.21 | 7.83 | 6.89 | 7.78 |
g(r)/Å | Before Compression | Yield Point | Second Stress Peak | |||
---|---|---|---|---|---|---|
A Point | B Point | A Point | B Point | A Point | B Point | |
Fe2C | 1.738 | 2.455 | 1.720 | 2.371 | 1.705 | 2.362 |
Fe3C | 1.729 | 2.353 | 1.729 | 2.248 | 1.729 | 2.248 |
Fe4C | 1.804 | 2.257 | 1.789 | 2.266 | 1.785 | 2.266 |
Fe7C3 | 1.759 | 2.254 | 1.756 | 2.248 | 1.762 | 2.224 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Yang, L.; Sun, K.; Zhu, P.; Chen, K. The Influence of Carbides on Atomic-Scale Mechanical Properties of Carbon Steel: A Molecular Dynamics Study. Nanomaterials 2022, 12, 4179. https://doi.org/10.3390/nano12234179
Zhang L, Yang L, Sun K, Zhu P, Chen K. The Influence of Carbides on Atomic-Scale Mechanical Properties of Carbon Steel: A Molecular Dynamics Study. Nanomaterials. 2022; 12(23):4179. https://doi.org/10.3390/nano12234179
Chicago/Turabian StyleZhang, Liang, Longlong Yang, Kun Sun, Pujie Zhu, and Keru Chen. 2022. "The Influence of Carbides on Atomic-Scale Mechanical Properties of Carbon Steel: A Molecular Dynamics Study" Nanomaterials 12, no. 23: 4179. https://doi.org/10.3390/nano12234179
APA StyleZhang, L., Yang, L., Sun, K., Zhu, P., & Chen, K. (2022). The Influence of Carbides on Atomic-Scale Mechanical Properties of Carbon Steel: A Molecular Dynamics Study. Nanomaterials, 12(23), 4179. https://doi.org/10.3390/nano12234179