Magneto-Optical Spectroscopy of Short Spin Waves by All-Dielectric Metasurface
Abstract
:1. Introduction
2. Magneto-Optical Spin-Wave Detection
3. Magnetophotonic Spin-Wave Detection in Mie-Based Metasurface
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Methods of Magneto-Optical Numerical Simulations
References
- Kim, S.K.; Beach, G.S.; Lee, K.J.; Ono, T.; Rasing, T.; Yang, H. Ferrimagnetic spintronics. Nat. Mater. 2022, 21, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Nikitov, S.A.; Kalyabin, D.V.; Lisenkov, I.V.; Slavin, A.N.; Barabanenkov, Y.N.; Osokin, S.A.; Sadovnikov, A.V.; Beginin, E.N.; Morozova, M.A.; Sharaevsky, Y.P.; et al. Magnonics: A new research area in spintronics and spin wave electronics. Physics-Uspekhi 2015, 58, 1002. [Google Scholar] [CrossRef]
- Stupakiewicz, A.; Szerenos, K.; Afanasiev, D.; Kirilyuk, A.; Kimel, A. Ultrafast nonthermal photo-magnetic recording in a transparent medium. Nature 2017, 542, 71–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamali, M.; Kwon, J.H.; Seo, S.M.; Lee, K.J.; Yang, H. Spin wave nonreciprocity for logic device applications. Sci. Rep. 2013, 3, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmoud, A.; Ciubotaru, F.; Vanderveken, F.; Chumak, A.V.; Hamdioui, S.; Adelmann, C.; Cotofana, S. Introduction to spin wave computing. J. Appl. Phys. 2020, 128, 161101. [Google Scholar] [CrossRef]
- Stupakiewicz, A.; Davies, C.; Szerenos, K.; Afanasiev, D.; Rabinovich, K.; Boris, A.; Caviglia, A.; Kimel, A.; Kirilyuk, A. Ultrafast phononic switching of magnetization. Nat. Phys. 2021, 17, 489–492. [Google Scholar] [CrossRef]
- Demokritov, S.O.; Demidov, V.E.; Dzyapko, O.; Melkov, G.A.; Serga, A.A.; Hillebrands, B.; Slavin, A.N. Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature 2006, 443, 430–433. [Google Scholar] [CrossRef] [PubMed]
- Gündoğan, M.; Ledingham, P.M.; Kutluer, K.; Mazzera, M.; De Riedmatten, H. Solid state spin-wave quantum memory for time-bin qubits. Phys. Rev. Lett. 2015, 114, 230501. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wang, Y.P.; Wu, W.J.; Zhu, S.Y.; You, J. Quantum network with magnonic and mechanical nodes. PRX Quantum 2021, 2, 040344. [Google Scholar] [CrossRef]
- Kirilyuk, A.; Kimel, A.V.; Rasing, T. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 2010, 82, 2731. [Google Scholar] [CrossRef]
- Kalashnikova, A.M.; Kimel, A.V.; Pisarev, R.V. Ultrafast opto-magnetism. Physics-Uspekhi 2015, 58, 969. [Google Scholar] [CrossRef]
- Chernov, A.I.; Kozhaev, M.A.; Ignatyeva, D.O.; Beginin, E.N.; Sadovnikov, A.V.; Voronov, A.A.; Karki, D.; Levy, M.; Belotelov, V.I. All-dielectric nanophotonics enables tunable excitation of the exchange spin waves. Nano Lett. 2020, 20, 5259–5266. [Google Scholar] [CrossRef] [PubMed]
- Chekhov, A.L.; Stognij, A.I.; Satoh, T.; Murzina, T.V.; Razdolski, I.; Stupakiewicz, A. Surface plasmon-mediated nanoscale localization of laser-driven sub-terahertz spin dynamics in magnetic dielectrics. Nano Lett. 2018, 18, 2970–2975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krichevsky, D.; Ignatyeva, D.; Ozerov, V.; Belotelov, V. Selective and tunable excitation of standing spin waves in a magnetic dielectric film by optical guided modes. Phys. Rev. Appl. 2021, 15, 034085. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Khorsand, A.; Savoini, M.; Koene, B.; Bossini, D.; Tsukamoto, A.; Itoh, A.; Ohtsuka, Y.; Aoshima, K.; Kimel, A.V.; et al. Ultrafast time-resolved magneto-optical imaging of all-optical switching in GdFeCo with femtosecond time-resolution and a μm spatial-resolution. Rev. Sci. Instrum. 2014, 85, 063702. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Daimon, S.; Iguchi, R.; Oikawa, Y.; Shen, K.; Sato, K.; Bossini, D.; Tabuchi, Y.; Satoh, T.; Hillebrands, B.; et al. All-optical observation and reconstruction of spin wave dispersion. Nat. Commun. 2017, 8, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Hortensius, J.; Afanasiev, D.; Matthiesen, M.; Leenders, R.; Citro, R.; Kimel, A.; Mikhaylovskiy, R.; Ivanov, B.; Caviglia, A. Coherent spin-wave transport in an antiferromagnet. Nat. Phys. 2021, 17, 1001–1006. [Google Scholar] [CrossRef]
- Voronov, A.; Ignatyeva, D.; Zvezdin, A.; Shapaeva, T.; Belotelov, V. Optical Excitation and Probing of Antiferromagnetic Modes with Nonuniform-in-depth Distribution in Birefringent Antiferromagnetic Crystals. Phys. Rev. Appl. 2021, 16, L051001. [Google Scholar] [CrossRef]
- Borovkova, O.V.; Lutsenko, S.V.; Kozhaev, M.A.; Kalish, A.N.; Belotelov, V.I. Spectrally Selective Detection of Short Spin Waves in Magnetoplasmonic Nanostructures via the Magneto-Optical Intensity Effect. Nanomaterials 2022, 12, 405. [Google Scholar] [CrossRef] [PubMed]
- Bonanni, V.; Bonetti, S.; Pakizeh, T.; Pirzadeh, Z.; Chen, J.; Nogués, J.; Vavassori, P.; Hillenbrand, R.; Åkerman, J.; Dmitriev, A. Designer magnetoplasmonics with nickel nanoferromagnets. Nano Lett. 2011, 11, 5333–5338. [Google Scholar] [CrossRef]
- Chin, J.Y.; Steinle, T.; Wehlus, T.; Dregely, D.; Weiss, T.; Belotelov, V.I.; Stritzker, B.; Giessen, H. Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation. Nature Commun. 2013, 4, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ignatyeva, D.O.; Krichevsky, D.M.; Belotelov, V.I.; Royer, F.; Dash, S.; Levy, M. All-dielectric magneto-photonic metasurfaces. J. Appl. Phys. 2022, 132, 100902. [Google Scholar] [CrossRef]
- Qin, J.; Xia, S.; Yang, W.; Wang, H.; Yan, W.; Yang, Y.; Wei, Z.; Liu, W.; Luo, Y.; Deng, L.; et al. Nanophotonic devices based on magneto-optical materials: Recent developments and applications. Nanophotonics 2022, 11, 2639–2659. [Google Scholar] [CrossRef]
- Rizal, C.; Manera, M.G.; Ignatyeva, D.O.; Mejía-Salazar, J.R.; Rella, R.; Belotelov, V.I.; Pineider, F.; Maccaferri, N. Magnetophotonics for sensing and magnetometry toward industrial applications. J. Appl. Phys. 2021, 130, 230901. [Google Scholar] [CrossRef]
- Maccaferri, N.; E Gregorczyk, K.; De Oliveira, T.V.; Kataja, M.; Van Dijken, S.; Pirzadeh, Z.; Dmitriev, A.; Åkerman, J.; Knez, M.; Vavassori, P. Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas. Nat. Commun. 2015, 6, 1–9. [Google Scholar]
- Ignatyeva, D.O.; Knyazev, G.A.; Kalish, A.N.; Chernov, A.I.; Belotelov, V.I. Vector magneto-optical magnetometer based on resonant all-dielectric gratings with highly anisotropic iron garnet films. J. Phys. D Appl. Phys. 2021, 54, 295001. [Google Scholar] [CrossRef]
- Belyaev, V.K.; Rodionova, V.V.; Grunin, A.A.; Inoue, M.; Fedyanin, A.A. Magnetic field sensor based on magnetoplasmonic crystal. Sci. Rep. 2020, 10, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Kalashnikova, A.; Kimel, A.; Pisarev, R.; Gridnev, V.; Kirilyuk, A.; Rasing, T. Impulsive generation of coherent magnons by linearly polarized light in the easy-plane antiferromagnet FeBO3. Phys. Rev. Lett. 2007, 99, 167205. [Google Scholar] [CrossRef] [Green Version]
- Deb, M.; Popova, E.; Hehn, M.; Keller, N.; Petit-Watelot, S.; Bargheer, M.; Mangin, S.; Malinowski, G. Damping of standing spin waves in bismuth-substituted yttrium iron garnet as seen via the time-resolved magneto-optical kerr effect. Phys. Rev. Appl. 2019, 12, 044006. [Google Scholar] [CrossRef]
- Mashkovich, E.; Grishunin, K.; Mikhaylovskiy, R.; Zvezdin, A.; Pisarev, R.; Strugatsky, M.; Christianen, P.; Rasing, T.; Kimel, A. Terahertz optomagnetism: Nonlinear THz excitation of GHz spin waves in antiferromagnetic FeBO 3. Phys. Rev. Lett. 2019, 123, 157202. [Google Scholar] [CrossRef] [Green Version]
- Belotelov, V.; Kalish, A.; Kotov, V.; Zvezdin, A. Slow light phenomenon and extraordinary magnetooptical effects in periodic nanostructured media. J. Magn. Magn. Mater. 2009, 321, 826–828. [Google Scholar] [CrossRef]
- Ko, Y.H.; Razmjooei, N.; Hemmati, H.; Magnusson, R. Perfectly-reflecting guided-mode-resonant photonic lattices possessing Mie modal memory. Opt. Express 2021, 29, 26971–26982. [Google Scholar] [CrossRef] [PubMed]
- González-Alcalde, A.K.; Mandujano, M.A.G.; Salas-Montiel, R.; Le Cunff, L.O.; Lerondel, G.; Méndez, E.R. Magnetic mirror metasurface based on the in-phase excitation of magnetic dipole and electric quadrupole resonances. J. Appl. Phys. 2019, 125, 243103. [Google Scholar] [CrossRef]
- Moharam, M.; Grann, E.B.; Pommet, D.A.; Gaylord, T. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. JOSA A 1995, 12, 1068–1076. [Google Scholar] [CrossRef]
- Li, L. Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors. J. Opt. A Pure Appl. Opt. 2003, 5, 345. [Google Scholar] [CrossRef]
- Ignatyeva, D.O.; Karki, D.; Voronov, A.A.; Kozhaev, M.A.; Krichevsky, D.M.; Chernov, A.I.; Levy, M.; Belotelov, V.I. All-dielectric magnetic metasurface for advanced light control in dual polarizations combined with high-Q resonances. Nat. Commun. 2020, 11, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ignatyeva, D.; Kapralov, P.; Knyazev, G.; Sekatskii, S.; Dietler, G.; Vasiliev, M.; Alameh, K.; Belotelov, V. High-Q surface modes in photonic crystal/iron garnet film heterostructures for sensor applications. JETP Lett. 2016, 104, 679–684. [Google Scholar] [CrossRef]
- Green, M.A. Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients. Sol. Energy Mater. Sol. Cells 2008, 92, 1305–1310. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ignatyeva, D.O.; Belotelov, V.I. Magneto-Optical Spectroscopy of Short Spin Waves by All-Dielectric Metasurface. Nanomaterials 2022, 12, 4180. https://doi.org/10.3390/nano12234180
Ignatyeva DO, Belotelov VI. Magneto-Optical Spectroscopy of Short Spin Waves by All-Dielectric Metasurface. Nanomaterials. 2022; 12(23):4180. https://doi.org/10.3390/nano12234180
Chicago/Turabian StyleIgnatyeva, Daria O., and Vladimir I. Belotelov. 2022. "Magneto-Optical Spectroscopy of Short Spin Waves by All-Dielectric Metasurface" Nanomaterials 12, no. 23: 4180. https://doi.org/10.3390/nano12234180
APA StyleIgnatyeva, D. O., & Belotelov, V. I. (2022). Magneto-Optical Spectroscopy of Short Spin Waves by All-Dielectric Metasurface. Nanomaterials, 12(23), 4180. https://doi.org/10.3390/nano12234180