Enhanced Photoluminescence of Gd3Al4GaO12: Cr3+ by Energy Transfers from Co-Doped Dy3+
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
3.1. Phase Identification and Crystal Structure
3.2. Luminescence Properties
3.3. Energy Transfer in GAGG: Cr3+, Dy3+
3.4. Temperature-Dependent Emission Spectra
3.5. LED Packages
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yeh, N.; Chung, J.P. High-brightness LEDs—Energy efficient lighting sources and their potential in indoor plant cultivation. Renew. Sustain. Energy Rev. 2016, 13, 2175–2180. [Google Scholar] [CrossRef]
- Qiu, Z.; Luo, T.; Zhang, J.; Zhou, W.; Yu, L.; Lian, S. A green approach to green-conversion material and green-agriculture: Alkaline-earth metal sulfide phosphors. J. Mater. Chem. C. 2015, 3, 9631–9636. [Google Scholar] [CrossRef]
- Massa, G.D.; Kim, H.H.; Wheeler, R.M.; Mitchell, C.A. Plant productivity in response to LED lighting. HortScience 2018, 43, 1951–1956. [Google Scholar] [CrossRef]
- Wu, T.; Lin, Y.; Zheng, L.; Guo, Z.; Xu, J.; Liang, S.; Chen, Z. Analyses of multi-color plant-growth light sources in achieving maximum photosynthesis efficiencies with enhanced color qualities. Opt. Express 2018, 26, 4135–4147. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Pang, R.; Wang, S.; Tan, T.; Li, C.; Wang, C.; Zhang, H. Enhanced blue-light excited cyan-emitting persistent luminescence of BaLu2Al2Ga2SiO12:Ce3+, Bi3+ phosphors for AC-LEDs via defect modulation. Light Sci. Appl. 2022, 11, 184. [Google Scholar] [CrossRef]
- Yao, Q.; Hu, P.; Sun, P.; Liu, M.; Liu, R.; Chao, K.; Jiang, H. YAG:Ce3+ transparent ceramic phosphors brighten the next-generation laser-driven lighting. Adv. Mater. 2020, 32, 1907888. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Yuan, C.; Liu, Y.; Wang, X.J.; Sun, P.; Wang, L.; Jiang, J. Strategies to approach high performance in Cr3+-doped phosphors for high-power NIR-LED light sources. Light Sci. Appl. 2020, 9, 86. [Google Scholar] [CrossRef]
- Olle, M.; Viršile, A. The effects of light-emitting diode lighting on greenhouse plant growth and quality. Agric. Food Sci. 2013, 22, 223–234. [Google Scholar] [CrossRef] [Green Version]
- Dramićanin, M.D.; Marciniak, Ł.; Kuzman, S.; Piotrowski, W.; Ristić, Z.; Periša, J.; Ma, C.G. Mn5+-activated Ca6Ba(PO4)4O near-infrared phosphor and its application in luminescence thermometry. Light Sci. Appl. 2020, 11, 1–13. [Google Scholar] [CrossRef]
- Dang, P.; Li, G.; Yun, X.; Zhang, Q.; Liu, D.; Lian, H.; Lin, J. Thermally stable and highly efficient red-emitting Eu3+-doped Cs3GdGe3O9 phosphors for WLEDs: Non-concentration quenching and negative thermal expansion. Light Sci. Appl. 2021, 10, 29. [Google Scholar] [CrossRef]
- Lei, L.; Wang, Y.; Kuzmin, A.; Hua, Y.; Zhao, J.; Xu, S.; Prasad, P.N. Next generation lanthanide doped nanoscintillators and photon converters. ELight 2022, 2, 17. [Google Scholar] [CrossRef]
- Sadraeian, M.; Zhang, L.; Aavani, F.; Biazar, E.; Jin, D. Viral inactivation by light. Elight 2022, 2, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Liu, Y.; Wang, D.; Zhu, Y.; Wen, S.; Ruan, J.; Jin, D. Upconversion nanoparticles for super-resolution quantification of single small extracellular vesicles. ELight 2022, 2, 20. [Google Scholar] [CrossRef]
- Hu, T.; Ning, L.; Gao, Y.; Qiao, J.; Song, E.; Chen, Z.; Zhang, Q. Glass crystallization making red phosphor for high-power warm white lighting. Light Sci. Appl. 2021, 10, 56. [Google Scholar] [CrossRef] [PubMed]
- Uheda, K.; Hirosaki, N.; Yamamoto, Y.; Naito, A.; Nakajima, T.; Yamamoto, H. Luminescence properties of a red phosphor CaAlSiN3:Eu2+, for white light-emitting diodes. Electrochem. Solid State Lett. 2006, 9, H22. [Google Scholar] [CrossRef]
- Zhu, H.; Lin, C.C.; Luo, W.; Shu, S.; Liu, Z.; Liu, Y.; Chen, X. Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes. Nat. Commun. 2014, 5, 4312. [Google Scholar] [CrossRef] [Green Version]
- Ueda, J.; Leaño, J.L.; Richard, C.; Asami, K.; Tanabe, S.; Liu, R.S. Broadband near-infrared persistent luminescence of Ba [Mg2Al2N4] with Eu2+ and Tm3+ after red light charging. J. Mater. Chem. C. 2019, 7, 1705–1712. [Google Scholar] [CrossRef]
- Menon, S.G.; Hebbar, D.N.; Kulkarni, S.D.; Choudhari, K.S.; Santhosh, C. Facile synthesis and luminescence studies of nanocrystalline red emitting Cr:ZnAl2O4 phosphor. Mater. Res. Bull. 2017, 86, 63–71. [Google Scholar] [CrossRef]
- Fang, M.H.; Huang, P.Y.; Bao, Z.; Majewska, N.; Lesniewski, T.; Mahlik, S.; Liu, R.S. Penetrating biological tissue using light-emitting diodes with a highly efficient near-infrared ScBO3:Cr3+ phosphor. Chem. Mater. 2020, 32, 2166–2171. [Google Scholar] [CrossRef]
- Zeng, H.; Zhou, T.; Wang, L.; Xie, R.J. Two-site occupation for exploring ultra-broadband near-infrared phosphor-double-perovskite La2MgZrO6:Cr3+. Chem. Mater. 2019, 31, 5245–5253. [Google Scholar] [CrossRef]
- Rajendran, V.; Lesniewski, T.; Mahlik, S.; Grinberg, M.; Leniec, G.; Kaczmarek, S.M.; Liu, R.S. Ultra-broadband phosphors converted near-infrared light emitting diode with efficient radiant power for spectroscopy applications. ACS Photon. 2019, 6, 3215–3224. [Google Scholar] [CrossRef]
- Feng, X.; Lin, L.; Duan, R.; Qiu, J.; Zhou, S. Transition metal ion activated near-infrared luminescent materials. Prog. Mater. Sci. 2022, 129, 100973. [Google Scholar] [CrossRef]
- Liu, S.; Sun, P.; Liu, Y.; Zhou, T.; Li, S.; Xie, R.J.; Jiang, H. Warm white light with a high color-rendering index from a single Gd3Al4GaO12:Ce3+ transparent ceramic for high-power LEDs and LDs. ACS Appl. Mater. Interfaces 2018, 11, 2130–2139. [Google Scholar] [CrossRef] [PubMed]
- Elzbieciak, K.; Bednarkiewicz, A.; Marciniak, L. Temperature sensitivity modulation through crystal field engineering in Ga3+ co-doped Gd3Al5-xGaxO12:Cr3+, Nd3+ nanothermometers. Sens. Actuators B Chem. 2018, 269, 96–102. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, S.; Hao, Z.; Zhang, X.; Pan, G.H.; Luo, Y.; Zhang, J. A high efficiency broad-band near-infrared Ca2LuZr2Al3O12:Cr3+ garnet phosphor for blue LED chips. J. Mater. Chem. C. 2018, 6, 4967–4976. [Google Scholar] [CrossRef]
- Yao, L.; Shao, Q.; Xu, X.; Dong, Y.; Liang, C.; He, J.; Jiang, J. Broadband emission of single-phase Ca3Sc2Si3O12:Cr3+/Ln3+ (Ln = Nd, Yb, Ce) phosphors for novel solid-state light sources with visible to near-infrared light output. Ceram. Int. 2019, 45, 14249–14255. [Google Scholar] [CrossRef]
- Wu, J.; Zhuang, W.; Liu, R.; Liu, Y.; Gao, T.; Yan, C.; Chen, X. Broadband near-infrared luminescence and energy transfer of Cr3+, Ce3+ co-doped Ca2LuHf2Al3O12 phosphors. J. Rare Earths 2021, 39, 269–276. [Google Scholar] [CrossRef]
- Bilir, G.; Ozen, G.; Bettinelli, M.; Piccinelli, F.; Cesaria, M.; Di Bartolo, B. Broadband Visible Light Emission From Nominally Undoped and Cr3+ Doped Garnet Nanopowders. IEEE Photon. J. 2014, 6, 1–11. [Google Scholar] [CrossRef]
- Rajendran, V.; Fang, H.M.; Huang, W.T.; Majewska, N.; Lesniewski, T.; Mahlik, S.; Liu, R.S. Chromium ion pair luminescence: A strategy in broadband near-infrared light-emitting diode design. J. Am. Chem. Soc. 2021, 143, 19058–19066. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta crystallographica section A: Crystal physics, diffraction. Theor. Gen. Crystallogr. 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Basavaraju, N.; Priolkar, K.R.; Gourier, D.; Bessière, A.; Viana, B. Order and disorder around Cr3+ in chromium doped persistent luminescent AB2O4 spinels. Phys. Chem. Chem. Phys. 2015, 17, 10993–10999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guzmán-Rocha, M.; Oliva, J.; Diaz-Torres, L.A.; Montes, E. Effect of the reducing atmospheres on the photoluminescent and phosphorescent properties of Sr4Al14O25:Eu2+, Dy3+, Cr3+ phosphors. J. Sol Gel Sci. Technol. 2020, 95, 423–431. [Google Scholar] [CrossRef]
- Sharma, S.K.; Gourier, D.; Viana, B.; Maldiney, T.; Teston, E.; Scherman, D.; Richard, C. Persistent luminescence of AB2O4:Cr3+ (A = Zn, Mg, B = Ga, Al) spinels: New biomarkers for in vivo imaging. Opt. Mater. 2014, 36, 1901–1906. [Google Scholar] [CrossRef]
- Yin, C.; Wang, R.; Jiang, P.; Cong, R.; Yang, T. Dy3+ and Tm3+ doped YGa3(BO3)4 for near ultraviolet excited white phosphors. J. Solid State Chem. 2019, 269, 30–35. [Google Scholar] [CrossRef]
- Devakumar, B.; Guo, H.; Zeng, Y.J.; Huang, X. A single-phased warm-white-emitting K3Y(PO4)2:Dy3+, Sm3+ phosphor with tuneable photoluminescence for near-UV-excited white LEDs. Dye. Pigment. 2018, 157, 72–79. [Google Scholar] [CrossRef]
- Xu, Q.; Sun, J.; Cui, D.; Di, Q.; Zeng, J. Synthesis and luminescence properties of novel Sr3Gd(PO4)3:Dy3+ phosphor. J. Lumin. 2015, 158, 301–305. [Google Scholar] [CrossRef]
- Zhao, L.; Meng, D.; Li, Y.; Zhang, Y.; Wang, H. Tunable emitting phosphors K3Gd(PO4)2:Tm3+-Dy3+ for light-emitting diodes and field emission displays. J. Alloys Compd. 2017, 728, 564–570. [Google Scholar] [CrossRef]
- Bai, Q.; Zhao, S.; Xu, Z.; Li, P. Tunable luminescence in co-doped Zn3Al2Ge2O10:Cr3+ by controlling crystal field splitting and nephelauxetic effect. J. Rare Earths 2020, 38, 1265–1272. [Google Scholar] [CrossRef]
- Du, P.; Yu, J.S. Self-activated multicolor emissions in Ca2NaZn2(VO4)3:Eu3+ phosphors for simultaneous warm white light-emitting diodes and safety sign. Dye Pigment. 2017, 147, 16–23. [Google Scholar] [CrossRef]
- Du, P.; Yu, J.S. Synthesis and luminescent properties of Eu3+-activated Na0.5Gd0.5MoO4: A strong red-emitting phosphor for LED and FED applications. J. Lumin. 2016, 179, 451–456. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, Y.; Xia, M.; Zhong, Y.; Zhou, N.; Hintzen, H.B. Improved luminescence and energy-transfer properties of Ca14Al10Zn6O35:Ti4+, Mn4+ deep-red-emitting phosphors with high brightness for light-emitting diode (LED) plant-growth lighting. Dalton Trans. 2018, 47, 13713–13721. [Google Scholar] [CrossRef] [PubMed]
- Ueda, J.; Tanabe, S. Visible to near infrared conversion in Ce3+-Yb3+ co-doped YAG ceramics. J. Appl. Phys. 2009, 106, 043101. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Li, X.; Hu, D.; Sa, Q.; Wang, X.; Wang, F.; Wang, K.; Zhou, X.; Song, Z.; Liu, Y.; et al. Enhanced Photoluminescence of Gd3Al4GaO12: Cr3+ by Energy Transfers from Co-Doped Dy3+. Nanomaterials 2022, 12, 4183. https://doi.org/10.3390/nano12234183
Zhang Y, Li X, Hu D, Sa Q, Wang X, Wang F, Wang K, Zhou X, Song Z, Liu Y, et al. Enhanced Photoluminescence of Gd3Al4GaO12: Cr3+ by Energy Transfers from Co-Doped Dy3+. Nanomaterials. 2022; 12(23):4183. https://doi.org/10.3390/nano12234183
Chicago/Turabian StyleZhang, Yu, Xiang Li, Dahai Hu, Qier Sa, Xinran Wang, Fengxiang Wang, Kaixuan Wang, Xuelian Zhou, Zhiqiang Song, Yongfu Liu, and et al. 2022. "Enhanced Photoluminescence of Gd3Al4GaO12: Cr3+ by Energy Transfers from Co-Doped Dy3+" Nanomaterials 12, no. 23: 4183. https://doi.org/10.3390/nano12234183
APA StyleZhang, Y., Li, X., Hu, D., Sa, Q., Wang, X., Wang, F., Wang, K., Zhou, X., Song, Z., Liu, Y., & Chao, K. (2022). Enhanced Photoluminescence of Gd3Al4GaO12: Cr3+ by Energy Transfers from Co-Doped Dy3+. Nanomaterials, 12(23), 4183. https://doi.org/10.3390/nano12234183