Multifunctional Waterborne Polyurethane Microreactor-Based Approach to Fluorocarbon Composite Latex Coatings with Double Self-Healing and Excellent Synergistic Performances
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Polymerization Procedure
2.2.1. Synthesis of Multifunctional Waterborne Polyurethane Dispersion (MFWPU)
2.2.2. Preparation of Waterborne Polyurethane (WPU-T) Using TEA as Neutralizer
2.2.3. Preparation of Waterborne Polyurethane (WPU) without Dynamic Disulfide Bond
2.2.4. Synthesis of P(CTFE-alt-IBVE) Latex
2.2.5. Preparation of P(CTFE-alt-IBVE)/MFWPU Composite Particles
2.2.6. Preparation of P(CTFE-alt-IBVE)/MFWPU Composite Latex Coating
2.3. Characterization
2.3.1. Fourier Transform Infrared Spectroscopy (FTIR)
2.3.2. Dynamic Light Scattering (DLS) Measurement
2.3.3. Scanning Electron Microscopy (SEM)
2.3.4. X-ray Photoelectron Spectroscopy (XPS)
2.3.5. UV Irradiation
2.3.6. Wetting Test
2.3.7. Adhesion Test
2.3.8. Abrasion Analysis
2.3.9. Scratch Self-Healing Test
2.3.10. Thermogravimetric Analysis (TGA)
2.3.11. Dynamic Thermomechanical Analysis (DMA)
2.3.12. Gel Permeation Chromatography (GPC)
2.3.13. Nuclear Magnetic Resonance (NMR)
2.3.14. Theoretical Fluorine Content
3. Results and Discussion
3.1. Particle Size and Composition of the MFWPU and P(CTFE-alt-IBVE)/MFWPU Composite Particles
3.2. Influence of 2,2′-Disulfide Diethanol Incorporation on Scratch Self-Healing Performance of the Composite Coating
3.3. Influence of C=C Bond in MFWPU on Surface Element Composition of the Composite Coatings
3.4. Double Self-Healing Model of Composite Coating
3.5. Regeneration Performance of the Composite Coating Surface
3.6. Optimization of Two Contradictory Properties of Scratch Self-Healing Polymers with Respect to Efficient Recovery and Durability
3.6.1. P(CTFE-alt-IBVE)/MFWPU Composite Particles Prepared with Different Mass Feed Ratios of MFWPU and IBVE
3.6.2. Influence of Different MFWPU/IBVE Mass Feed Ratios on the Scratch Self-Healing Performance of the Composite Coatings
3.6.3. Influence of Different MFWPU/IBVE Mass Feed Ratios on the Thermal Stability of the Composite Coatings
3.6.4. Influence of Different MFWPU/IBVE Mass Feed Ratios on the Water Resistance of the Composite Coatings
3.7. UV Resistance and Adhesion Performance of Composite Coatings
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, H.; Wang, H.; Niu, H.; Zhao, Y.; Xu, Z.; Lin, T. A waterborne coating system for preparing robust, self-healing, superamphiphobic surfaces. Adv. Funct. Mater. 2017, 27, 1604261. [Google Scholar] [CrossRef]
- Chen, K.; Zhou, S.; Yang, S.; Wu, L. Fabrication of all-water-based self-repairing superhydrophobic coatings based on UV-responsive microcapsules. Adv. Funct. Mater. 2015, 25, 1035–1041. [Google Scholar] [CrossRef]
- Zhao, D.; Pan, M.; Yuan, J.; Liu, H.; Song, S.; Zhu, L. A waterborne coating for robust superamphiphobic surfaces. Prog. Org. Coat. 2019, 138, 105368. [Google Scholar] [CrossRef]
- Hu, J.; Peng, K.; Guo, J.; Shan, D.; Kim, G.B.; Li, Q.; Gerhard, E.; Zhu, L.; Tu, W.; Lv, W.; et al. Click crosslinking improved waterborne polymers for environment-friendly coatings and adhesives. ACS Appl. Mater. Interfaces 2016, 8, 17499–17510. [Google Scholar] [CrossRef] [PubMed]
- Xing, J.; Zhang, G.; Jia, X.; Liu, D.; Wyman, I. Preparation of multipurpose polyvinylidene fluoride membranes via a spray-coating strategy using waterborne polymers. ACS Appl. Mater. Interfaces 2021, 13, 4485–4498. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhu, T.; Li, S.; Huang, J.; Mao, J.; Yang, H.; Gao, S.; Chen, Z.; Lai, Y. A novel strategy for fabricating robust superhydrophobic fabrics by environmentally-friendly enzyme etching. Chem. Eng. J. 2019, 355, 290–298. [Google Scholar] [CrossRef]
- Chimenti, S.; Vega, J.M.; Lecina, E.G.; Grande, H.J.; Paulis, M.; Leiza, J.R. Combined effect of crystalline nanodomains and in situ phosphatization on the anticorrosion properties of waterborne composite latex films. Ind. Eng. Chem. Res. 2019, 58, 21022–21030. [Google Scholar] [CrossRef]
- Chimenti, S.; Vega, J.M.; Garcia-Lecina, E.; Grande, H.J.; Paulis, M.; Leiza, J.R. In-situ phosphatization and enhanced corrosion properties of films made of phosphate functionalized nanoparticles. React. Funct. Polym. 2019, 143, 104334. [Google Scholar]
- Drobny, J.G. Fluoropolymers in automotive applications. Polym. Adv. Technol. 2006, 18, 117–121. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, L.; Wu, Z.; Zhang, Y.; Zhang, X. Fabrication of hydrophobic flat sheet and hollow fiber membranes from PVDF and PVDF-CTFE for membrane distillation. J. Membr. Sci. 2016, 497, 183–193. [Google Scholar] [CrossRef]
- Sha, M.; Pan, R.; Zhan, L.; Xing, P.; Jiang, B. Synthesis and surface activity study of a novel branched fluorinated anion surfactant with CF3CF2CF2C(CF3)2 group. Chin. J. Chem. 2015, 32, 995–998. [Google Scholar] [CrossRef]
- Anton, D. Surface-fluorinated coatings. Adv. Mater. 1998, 10, 1197–1205. [Google Scholar] [CrossRef]
- Zeng, Y.; Hu, J. Recent advances in green fluorine chemistry. Rep. Org. Chem. 2015, 5, 19–39. [Google Scholar]
- Liu, Q.; Ni, C.; Hu, J. China’s fourishing fynthetic organofluorine chemistry: Innovations in the new millennium. Natl. Sci. Rev. 2017, 4, 303–325. [Google Scholar] [CrossRef] [Green Version]
- Sadat-Shojai, M.; Ershad-Langroudi, A. Polymeric coatings for protection of hietoric monuments: Opportunities and challenges. J. Appl. Polym. Sci. 2009, 112, 2535–2551. [Google Scholar] [CrossRef]
- Zhao, J.; Zhou, T.; Zhang, J.; Chen, H.; Yuan, C.; Zhang, W.; Zhang, A. Synthesis of a waterborne polyurethane-fluorinated emulsion and its hydrophobic properties of coating films. Ind. Eng. Chem. Res. 2014, 53, 19257–19264. [Google Scholar] [CrossRef]
- Jiang, Y.; Pan, M.; Yuan, J.; Wang, J.; Song, S.; Liu, G. Fabrication and structural characterization of poly(vinylidene fluoride)/polyacrylate composite waterborne coatings with excellent weather resistance and room-temperature curing. Colloids Surf. A 2020, 598, 124851. [Google Scholar] [CrossRef]
- Jiang, K.; Han, S.; Ma, M.; Zhang, L.; Zhao, Y.; Chen, M. Photoorganocatalyzed reversible-deactivation alternating copolymerization of chlorotrifluoroethylene and vinyl ethers under ambient conditions: Facile access to main-chain fluorinated copolymers. J. Am. Chem. Soc. 2020, 142, 7108–7115. [Google Scholar] [CrossRef]
- Lopez, G.; Thenappan, A.; Ameduri, B. Synthesis of chlorotrifluoroethylene-based block copolymers by iodine transfer polymerization. ACS Macro Lett. 2015, 4, 16–20. [Google Scholar] [CrossRef]
- Reddy, C.K.; Shekharam, T.; Shailaja, D. Preparation and characterization of poly(chlorotrifluoroethylene-co-ethylvinyl ether)/poly(styrene acrylate) core-shells and SiO2 nanocomposite films via a solution mixing method. J. Appl. Polym. Sci. 2012, 126, 1709–1713. [Google Scholar] [CrossRef]
- Couture, G.; Ladmiral, V.; Améduri, B. Methods to prepare quaternary ammonium groups-containing alternating poly(chlorotrifluoroethylene-alt-vinyl ether) copolymers. RSC Adv. 2015, 5, 10243–10253. [Google Scholar] [CrossRef]
- Couture, G.; Campagne, B.; Alaaeddine, A.; Améduri, B. Synthesis and characterizations of alternating co- and terpolymers based on vinyl ethers and chlorotrifluoroethylene. Polym. Chem. 2013, 4, 1960–1968. [Google Scholar] [CrossRef]
- Alaaeddine, A.; Couture, G.; Ameduri, B. An efficient method to synthesize vinyl ethers (VEs) that bear various halogenated or functional groups and their radical copolymerization with chlorotrifluoroethylene (CTFE) to yield functional poly(VE-alt-CTFE) alternated copolymers. Polym. Chem. 2013, 4, 4335–4347. [Google Scholar] [CrossRef]
- Couture, G.; Ladmiral, V.; Améduri, B. Comparison of epoxy- and cyclocarbonate-functionalised vinyl ethers in radical copolymerisation with chlorotrifluoroethylene. J. Fluor. Chem. 2015, 171, 124–132. [Google Scholar] [CrossRef]
- Boschet, F.; Ameduri, B. (Co)polymers of chlorotrifluoroethylene: Synthesis, properties, and applications. Chem. Rev. 2014, 114, 927–980. [Google Scholar] [CrossRef]
- Fu, H.; Yan, C.; Zhou, W.; Huang, H. Preparation and characterization of a novel organic montmorillonite/fluorinated waterborne polyurethane nanocomposites: Effect of OMMT and HFBMA. Compos. Sci. Technol. 2013, 85, 65–72. [Google Scholar] [CrossRef]
- Zhou, H.; Zhao, Y.; Wang, H.; Lin, T. Recent development in durable super-liquid-repellent fabrics. Adv. Mater. Interfaces 2016, 3, 1600402. [Google Scholar] [CrossRef]
- Wang, M.; Shi, X.; Wang, J. Water-based fluorine containing copolymer paint. Organo-Fluor. Ind. 2002, 2, 3–7. [Google Scholar]
- Li, J.; Feng, Q.; Cui, J.; Yuan, Q.; Qiu, H.; Gao, S.; Yang, J. Self-assembled graphene oxide microcapsules in Pickering emulsions for self-healing waterborne polyurethane coatings. Compos. Sci. Technol. 2017, 151, 282–290. [Google Scholar] [CrossRef]
- Sheng, Y.; Wang, M.; Zhang, K.; Wu, Z.; Chen, Y.; Lu, X. An “inner soft external hard”, scratch-resistant, self-healing waterborne poly(urethane-urea) coating based on gradient metal coordination structure. Chem. Eng. J. 2021, 426, 131883. [Google Scholar] [CrossRef]
- Zhu, K.; Li, Z.; Cheng, F.; Wu, C.; Cai, D.; Zhang, Q.; Zhang, H. Preparation of durable superhydrophobic composite coatings with photothermal conversion precisely targeted configuration self-healability and great degradability. Compos. Sci. Technol. 2021, 213, 108926. [Google Scholar] [CrossRef]
- Jia, Y.; Zhang, L.; Qin, M.; Li, Y.; Gu, S.; Guan, Q.; You, Z. Highly efficient self-healable and robust fluorinated polyurethane elastomer for wearable electronics. Chem. Eng. J. 2022, 430, 133081. [Google Scholar] [CrossRef]
- Lai, Y.; Kuang, X.; Zhu, P.; Huang, M.; Dong, X.; Wang, D. Colorless, transparent, robust, and fast scratch-self-healing elastomers via a phase-locked dynamic bonds design. Adv. Mater. 2018, 30, 1802556. [Google Scholar] [CrossRef]
- Wang, X.; Zhan, S.; Lu, Z.; Li, J.; Yang, X.; Qiao, Y.; Men, Y.; Sun, J. Healable, recyclable, and mechanically tough polyurethane elastomers with exceptional damage tolerance. Adv. Mater. 2020, 32, e2005759. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.M.; Jeon, H.; Shin, S.H.; Park, S.A.; Jegal, J.; Hwang, S.Y.; Oh, D.X.; Park, J. Superior toughness and fast self-healing at room temperature engineered by transparent elastomers. Adv. Mater. 2018, 30, 1705145. [Google Scholar] [CrossRef]
- Xu, J.; Chen, J.; Zhang, Y.; Liu, T.; Fu, J. A fast room-temperature self-healing glassy polyurethane. Angew. Chem. 2021, 60, 7947–7955. [Google Scholar] [CrossRef]
- Tang, P.; Liu, L.; Cao, D.; Gao, X.; Liu, X.; Tao, J. Review on adhesion mechanism and adhesion enhancement of organic coatings. Mater. Prot. 2020, 53, 126–135. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Guo, H.; Zhang, N.; Jin, Y.; Han, K.; Yuan, J.; Pan, Z.; Pan, M. Multifunctional Waterborne Polyurethane Microreactor-Based Approach to Fluorocarbon Composite Latex Coatings with Double Self-Healing and Excellent Synergistic Performances. Nanomaterials 2022, 12, 4216. https://doi.org/10.3390/nano12234216
Li C, Guo H, Zhang N, Jin Y, Han K, Yuan J, Pan Z, Pan M. Multifunctional Waterborne Polyurethane Microreactor-Based Approach to Fluorocarbon Composite Latex Coatings with Double Self-Healing and Excellent Synergistic Performances. Nanomaterials. 2022; 12(23):4216. https://doi.org/10.3390/nano12234216
Chicago/Turabian StyleLi, Chao, Huimin Guo, Ning Zhang, Yao Jin, Kai Han, Jinfeng Yuan, Zhicheng Pan, and Mingwang Pan. 2022. "Multifunctional Waterborne Polyurethane Microreactor-Based Approach to Fluorocarbon Composite Latex Coatings with Double Self-Healing and Excellent Synergistic Performances" Nanomaterials 12, no. 23: 4216. https://doi.org/10.3390/nano12234216
APA StyleLi, C., Guo, H., Zhang, N., Jin, Y., Han, K., Yuan, J., Pan, Z., & Pan, M. (2022). Multifunctional Waterborne Polyurethane Microreactor-Based Approach to Fluorocarbon Composite Latex Coatings with Double Self-Healing and Excellent Synergistic Performances. Nanomaterials, 12(23), 4216. https://doi.org/10.3390/nano12234216