MOF-Derived MnO/C Nanocomposites for High-Performance Supercapacitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of MnO/C Nanocomposites
2.2. Characterization
2.3. Electrochemical Characterization
3. Results and Discussion
3.1. Structure Characterization
3.2. Formation Mechanism
3.3. Electrochemical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xing, T.; Sun, M.Q.; Guo, S.Y.; Harris, O.; Zhong, Y.R.; Tang, L.Y.; Zhang, S.L.; Yang, M.; Xia, H. Smart confinement of MnO enabling highly reversible Mn(II)/Mn(III) redox for asymmetric supercapacitors. J. Power Sources 2021, 495, 229801. [Google Scholar] [CrossRef]
- Zhou, J.S.; Lian, J.; Hou, L.; Zhang, J.C.; Gou, H.Y.; Xia, M.R.; Zhao, Y.F.; Strobel, T.A.; Tao, L.; Gao, F.M. Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres. Nat. Commun. 2015, 6, 8503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao, Y.Q.; Wang, H.P.; Zhang, X.Y.; Jia, P.; Shen, T.D.; Hao, X.F.; Tang, Y.F.; Wang, X.H.; Gao, W.M.; Kong, L.X. Ultrahigh volumetric capacitance biomorphic porous carbon material derived from mold. Mater. Lett. 2016, 184, 252–256. [Google Scholar] [CrossRef]
- Zhong, M.Z.; Zhang, M.; Li, X.F. Carbon nanomaterials and their composites for supercapacitors. Carbon Energy 2022, 4, 950–985. [Google Scholar] [CrossRef]
- Yan, X.L.; Li, X.J.; Yan, Z.F.; Komarneni, S. Porous carbons prepared by direct carbonization of MOFs for supercapacitors. Appl. Surf. Sci. 2014, 308, 306–310. [Google Scholar] [CrossRef]
- Guo, W.C.; Guo, X.T.; Yang, L.; Wang, T.Y.; Zhang, M.H.; Duan, G.G.; Liu, X.H.; Li, Y.W. Synthetic melanin facilitates MnO supercapacitors with high specific capacitance and wide operation potential window. Polymer 2021, 235, 124276. [Google Scholar] [CrossRef]
- Zhang, W.J.; Li, M.; Zhong, L.; Huang, J.L.; Liu, M.L. A family of MOFs@wood-derived hierarchical porous composites as freestanding thick electrodes of solid supercapacitors with enhanced areal capacitances and energy densities. Mater. Today Energy 2022, 24, 100951. [Google Scholar] [CrossRef]
- Zhao, N.; Deng, L.B.; Luo, D.W.; Zhang, P.X. One-step fabrication of biomass-derived hierarchically porous carbon/MnO nanosheets composites for symmetric hybrid supercapacitor. Appl. Surf. Sci. 2022, 526, 146696. [Google Scholar] [CrossRef]
- Kang, D.M.; Liu, Q.L.; Si, R.; Gu, J.J.; Zhang, W.; Zhang, D. Crosslinking-derived MnO/carbon hybrid with ultrasmall nanoparticles for increasing lithium storage capacity during cycling. Carbon 2016, 99, 138–147. [Google Scholar] [CrossRef]
- Maseed, H.; Srikanth, V.V.S.S.; Narayana, A.L.; Hussain, O.M.; Shaikshavali, P. MnO/few-layered-graphene composite as a high performance electrode material in aqueous supercapacitors. Mater. Lett. 2020, 277, 128370. [Google Scholar] [CrossRef]
- Zheng, F.C.; Xia, G.L.; Yang, Y.; Chen, Q.W. MOF-derived ultrafine MnO nanocrystals embedded in a porous carbon matrix as high-performance anodes for lithium-ion batteries. Nanoscale 2015, 7, 9637. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.H.; Yang, X.F.; Zhong, Y.L.; Ying, J.Y. Porous MnO/Mn3O4 nanocomposites for electrochemical energy storage. Nano Energy 2015, 13, 702–708. [Google Scholar] [CrossRef]
- Huang, Y.L.; Bian, S.W. Vacuum-filtration assisted layer-by-layer strategy to design MXene/carbon nanotube@MnO2 all-in-one supercapacitors. J. Mater. Chem. A 2021, 9, 21347. [Google Scholar] [CrossRef]
- Reinsch, H.; Stock, N. Formation and characterization of Mn-MIL-100. Cryst. Eng. Comm. 2013, 15, 544. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.D.; Li, H.X.; Hou, F.L.; Yang, Y.; Dong, H.; Liu, N.; Wang, Y.X.; Cui, L.F. Synthesis of highly efficient Mn2O3 catalysts for CO oxidation derived from Mn-MIL-100. Appl. Surf. Sci. 2017, 411, 27–33. [Google Scholar] [CrossRef]
- Wu, Y.F.; Song, X.H.; Zhang, J.H.; Xu, S.Q.; Gao, L.J.; Zhang, J.; Xiao, G.M. Mn-based MOFs as efficient catalysts for catalytic conversion of carbon dioxide into cyclic carbonates and DFT studies. Chem. Eng. Sci. 2019, 201, 288–297. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, X.F.; Jia, Z.R.; Wu, H.J.; Wu, G.L. Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites. Adv. Funct. Mater. 2022, 32, 2204499. [Google Scholar] [CrossRef]
- Wang, K.B.; Lv, B.; Wang, Z.K.; Wu, H.; Xu, J.Y.; Zhang, Q.C. Two-fold interpenetrated Mn-based metal-organic frameworks (MOFs) as battery-type electrode materials for charge storage. Dalton Trans. 2020, 49, 411. [Google Scholar] [CrossRef]
- Zheng, R.Q.; Guo, J.R.; Cai, X.Y.; Bin, L.J.; Lu, C.Y.; Singh, A.; Trivedi, M.; Kumar, A.; Liu, J.Q. Manganese complexes and manganese-based metal-organic frameworks as contrast agents in MRI and chemotherapeutics agents: Applications and prospects. Colloid. Surface B 2022, 213, 112432. [Google Scholar] [CrossRef]
- Li, H.L.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O.M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276–279. [Google Scholar] [CrossRef]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.L.; Bai, Y.; Li, W.T.; Yang, F.Y.; Zhang, G.X.; Pang, H. In situ growth of three-dimensional Mxene/metal-organic framework composites for high-performance supercapacitors. Angew. Chem. Int. Ed. 2022, 61, e202116282. [Google Scholar]
- Chhetri, K.; Dahal, B.; Mukhiya, T.; Tiwari, A.P.; Muthurasu, A.; Kim, T.; Kim, H.; Kim, H.Y. Integrated hybrid of graphitic carbon-encapsulated CuxO on multilayered mesoporous carbon from copper MOFs and polyaniline for asymmetric supercapacitor and oxygen reduction reactions. Carbon 2021, 179, 89–99. [Google Scholar] [CrossRef]
- Du, W.; Bai, Y.L.; Xu, J.Q.; Zhao, H.B.; Zhang, L.; Li, X.F.; Zhang, J.J. Advanced metal-organic frameworks (MOFs) and their derived electrode materials for supercapacitors. J. Power Sources 2018, 402, 281–295. [Google Scholar] [CrossRef]
- Azadfalah, M.; Sedghi, A.; Hosseini, H.; Kashani, H. Cobalt based metal organic framework/graphene nanocomposite as high performance battery-type electrode materials for asymmetric supercapacitors. J. Energy Storage 2021, 33, 101925. [Google Scholar] [CrossRef]
- Li, H.; Yue, F.; Yang, C.; Qiu, P.; Xue, P.; Xu, Q.; Wang, J. Porous nanotubes derived from a metal-organic framework as high-performance supercapacitor electrodes. Ceram. Int. 2016, 42, 3121–3129. [Google Scholar] [CrossRef]
- Zhang, B.W.; Hao, S.J.; Xiao, D.R.; Wu, J.S.; Huang, Y.H. Templated formation of porous Mn2O3 octahedra from Mn-MIL-100 for lithium-ion battery anode materials. Mater. Des. 2016, 98, 319–323. [Google Scholar] [CrossRef]
- Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005, 309, 2040. [Google Scholar] [CrossRef]
- Férey, G.; Serre, C.; Mellot-Draznieks, C.; Millange, F.; Surblé, S.; Dutour, J.; Margiolaki, I. A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction. Angew. Chem. 2004, 116, 6456–6461. [Google Scholar] [CrossRef]
- Díaz-García, M.; Mayoral, Á.; Díaz, I.; Sánchez-Sánchez, M. Nanoscaled M-MOF-74 materials prepared at room temperature. Cryst. Growth Des. 2014, 14, 2479–2487. [Google Scholar] [CrossRef]
- Mayoral, A.; Sanchez-Sanchez, M.; Alfayate, A.; Perez-Pariente, J.; Diaz, I. Atomic observations of microporous materials highly unstable under the electron beam: The cases of Ti-dopedAlPO4-5 and Zn-MOF-74. Chem. Cat. Chem. 2015, 7, 3719–3724. [Google Scholar] [CrossRef]
- Zhu, Y.H.; Ciston, J.; Zheng, B.; Miao, X.H.; Czarnik, C.; Pan, Y.C.; Sougrat, R.; Lai, Z.P.; Hsiung, C.E.; Yao, K.X.; et al. Unravelling surface and interfacial structures of a metal-organic framework by transmission electron microscopy. Nat. Mater. 2017, 16, 532–536. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.J.; Liang, Z.X.; Hu, O.; He, Q.D.; Sun, D.P.; Chen, Z.G. An electrochemical dual-aptamer biosensor based on metal-organic frameworks MIL-53 decorated with Au@Pt nanoparticles and enzymes for detection of COVID-19 nucleocapsid protein. Electrochim. Acta 2021, 387, 138553. [Google Scholar] [CrossRef]
- Liu, N.; Wang, J.L.; Tian, M.; Lei, J.Q.; Wang, J.F.; Shi, W.Y.; Zhang, X.D.; Tang, L. Boron nitride nanosheets decorated MIL-53(Fe) for efficient synergistic ibuprofen photocatalytic degradation by persulfate activation. J. Colloid Interf. Sci. 2021, 603, 270–281. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Wang, J.L.; Wu, J.X.; Li, Z.M.; Huang, W.Y.; Zheng, Y.J.; Lei, J.Q.; Zhang, X.D.; Tang, L. Magnetic Fe3O4@MIL-53(Fe) nanocomposites derived from MIL-53(Fe) for the photocatalytic degradation of ibuprofen under visible light irradiation. Mater. Res. Bull. 2020, 132, 111000. [Google Scholar] [CrossRef]
- Omer, A.M.; El-Monaem, E.M.A.; El-Subruiti, G.M.; El-Latif, M.M.A.; Eltaweil, A.S. Fabrication of easy separable and reusable MIL-125(Ti)/ MIL-53(Fe) binary MOF/CNT/ Alginate composite microbeads for tetracycline removal from water bodies. Sci. Rep. 2021, 11, 23818. [Google Scholar] [CrossRef]
- Antiohos, D.; Pingmuang, K.; Romano, M.S.; Beirne, S.; Romeo, T.; Aitchison, P.; Minett, A.; Wallace, G.; Phanichphant, S.; Chen, J. Manganosite-microwave exfoliated graphene oxide composites for asymmetric supercapacitor device applications. Electrochim. Acta 2013, 101, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Samuel, E.; Jo, H.S.; Joshi, B.; Park, H.G.; Kim, Y.I.; An, S.; Swihart, M.T.; Yun, J.M.; Kim, K.H.; Yoon, S.S. High-performance supercapacitors using flexible and freestanding MnOx/carbamide carbon nanofibers. App. Surf. Sci. 2017, 423, 210–218. [Google Scholar] [CrossRef]
- Luo, Y.Z.; Zhang, H.M.; Wang, L.; Zhang, M.; Wang, T.H. Fixing graphene-Mn3O4 nanosheets on carbon cloth by a poles repel-assisted method to prepare flexible binder-free electrodes for supercapacitors. Electrochim. Acta 2015, 180, 983–989. [Google Scholar] [CrossRef]
- Li, C.Y.; Wang, S.Y.; Zhang, G.W.; Du, Z.L.; Wang, G.L.; Yang, J.; Qin, X.J.; Shao, G.J. Three-dimensional crisscross porous manganese oxide/carbon composite networks for high performance supercapacitor electrodes. Electrochim. Acta 2015, 161, 32–39. [Google Scholar] [CrossRef]
Electrode Material | Capacity Current Density | Cycle Performance Current Density | Ref. |
---|---|---|---|
MnO/rGO | 51.5 F g−1/0.5 A g−1 | 15,000 cycles/0.5 A g−1 | [37] |
MnOx/CCNF | 271 F g−1/1 A g−1 | 5000 cycles/1 A g−1 | [38] |
Mn3O4/ graphene | 502 F g−1/1 A g−1 | 1000 cycles/5 A g−1 | [39] |
MnOx/C | 807 F g−1/1 A g−1 | 2500 cycles/1 A g−1 | [40] |
MnO/C | 421 F g−1/0.5 A g−1 | 5000 cycles/5 A g−1 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, Y.; Li, N.; Dong, M.; Jia, P.; Ma, C.; Zhang, T.; Jiao, T. MOF-Derived MnO/C Nanocomposites for High-Performance Supercapacitors. Nanomaterials 2022, 12, 4257. https://doi.org/10.3390/nano12234257
Qiao Y, Li N, Dong M, Jia P, Ma C, Zhang T, Jiao T. MOF-Derived MnO/C Nanocomposites for High-Performance Supercapacitors. Nanomaterials. 2022; 12(23):4257. https://doi.org/10.3390/nano12234257
Chicago/Turabian StyleQiao, Yuqing, Na Li, Mingwei Dong, Peng Jia, Chongchong Ma, Tong Zhang, and Tifeng Jiao. 2022. "MOF-Derived MnO/C Nanocomposites for High-Performance Supercapacitors" Nanomaterials 12, no. 23: 4257. https://doi.org/10.3390/nano12234257
APA StyleQiao, Y., Li, N., Dong, M., Jia, P., Ma, C., Zhang, T., & Jiao, T. (2022). MOF-Derived MnO/C Nanocomposites for High-Performance Supercapacitors. Nanomaterials, 12(23), 4257. https://doi.org/10.3390/nano12234257