Microwave Heating of the Catalyst Bed as a Way of Energy-Saving Oxidative Dehydrogenation of Ethane on a Mo-V-Te-Nb-Ox Catalyst
Abstract
:1. Introduction
2. Results
2.1. Catalyst Characterization
2.2. Catalyst Testing
3. Discussion
4. Materials and Methods
4.1. Catalyst Preparation
4.2. Catalyst Testing
4.3. Catalyst Characterization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kustov, L.M.; Kucherov, A.V.; Finashina, E.D. Oxidative dehydrogenation of C2–C4 alkanes into alkenes: Conventional catalytic systems and microwave catalysis. Russ. J. Phys. Chem. A 2013, 87, 345–351. [Google Scholar] [CrossRef]
- Ogo, S.; Sekine, Y. Catalytic Reaction Assisted by Plasma or Electric Field. Chem. Rec. 2017, 17, 726–738. [Google Scholar] [CrossRef] [PubMed]
- Ogo, S.; Iwasaki, K.; Sugiura, K.; Sato, A.; Yabe, T.; Sekine, Y. Catalytic oxidative conversion of methane and ethane over polyoxometalate-derived catalysts in electric field at low temperature. Catal. Today 2018, 299, 80–85. [Google Scholar] [CrossRef]
- Oshima, K.; Shinagawa, T.; Haraguchi, M.; Sekine, Y. Low temperature hydrogen production by catalytic steam reforming of methane in an electric field. Int. J. Hydrogen Energy 2013, 38, 3003–3011. [Google Scholar] [CrossRef]
- Zhu, C.; Hou, S.; Hu, X.; Lu, J.; Chen, F.; Xie, K. Electrochemical conversion of methane to ethylene in a solid oxide electrolyzer. Nat. Commun. 2019, 10, 1173. [Google Scholar] [CrossRef] [Green Version]
- Tse, M.Y.; Depew, M.C.; Wan, J.K.S. Applications of high power microwave catalysis in chemistry. Res. Chem. Intermed. 1990, 13, 221–236. [Google Scholar] [CrossRef]
- Kucherov, A.V.; Finashina, E.D.; Kustov, L.M.; Simanzhenkov, V. Electric heating of the Mo–V–Fe–Nb–Ox catalyst bed in oxidative dehydrogenation of ethane. Mend. Commun. 2020, 30, 657–659. [Google Scholar] [CrossRef]
- Isaeva, V.I.; Kustov, L.M.; Deiko, G.S.; Tarasov, A.L. Hydroamination of Phenylacetylene on Gold-Containing Catalytic Systems Supported on Substrates Modified with Ionic Liquids under Conditions of Microwave Activation. Russ. J. Phys. Chem. A 2021, 95, 512–515. [Google Scholar] [CrossRef]
- Kustov, A.L.; Tarasov, A.L.; Tkachenko, O.P.; Mishin, I.V.; Kapustin, G.I.; Kustov, L.M. Ethanol to Acetaldehyde Conversion under Thermal and Microwave Heating of ZnO-CuO-SiO2 Modified with WC Nanoparticles. Molecules 2021, 26, 1955. [Google Scholar] [CrossRef]
- Dzieak, A.; Mucha, A. Catalytic and MW-Assisted Michaelis-Arbuzov Reactions. Curr. Green Chem. 2015, 2, 223–236. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, W.; You, Z.; Wang, Y.Z.; Luo, L.; Gao, C.; Yin, R.; Peng Lan, L. A new type of power energy for accelerating chemical reactions: The nature of a microwave-driving force for accelerating chemical reactions. Sci. Rep. 2016, 6, 25149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huszár, B.; Henyecz, R.; Mucsi, Z.; Keglevich, G. MW-Promoted Cu(I)-Catalyzed P–C Coupling Reactions without the Addition of Conventional Ligands; an Experimental and a Theoretical Study. Catalysts 2021, 11, 933. [Google Scholar] [CrossRef]
- Floris, B.; Sabuzi, F.; Galloni, P.; Conte, V. The Beneficial Sinergy of MW Irradiation and Ionic Liquids in Catalysis of Organic Reactions. Catalysts 2017, 7, 261. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.M.; Pham, G.H.; Ran, R.; Vagnoni, R.; Pareeka, V.; Liu, S. Dry reforming of methane over Co–Mo/Al2O3 catalyst under low microwave power irradiation. Catal. Sci. Technol. 2018, 8, 5315–5324. [Google Scholar] [CrossRef] [Green Version]
- Sinev, I.; Kardash, T.; Kramareva, N.; Sinev, M.; Tkachenko, O.; Kucherov, A.; Kustov, L. Interaction of vanadium containing catalysts with microwaves and their activation in oxidative dehydrogenation of ethane. Catal. Today 2009, 141, 300–305. [Google Scholar] [CrossRef]
- Kustov, L.M.; Sinev, I.M. Microwave activation of catalysts and catalytic processes. Russ. J. Phys. Chem. A 2010, 84, 1676–1694. [Google Scholar] [CrossRef]
- Melzer, D.; Mestl, G.; Wanninger, K.; Zhu, Y.; Browning, N.D.; Sanchez-Sanchez, M.; Lercher, J.A. Design and synthesis of highly active MoVTeNb-oxides for ethane oxidative dehydrogenation. Nat. Commun. 2019, 10, 4012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finashina, E.D.; Kucherov, A.V.; Kustov, L.M.; Cai, H.; Krzywicki, A. Effect of feedstock impurities on activity and selectivity of V-Mo-Nb-Te-Ox catalyst in ethane oxidative dehydrogenation. J. Adv. Oxid. Technol. 2017, 20, 20160165. [Google Scholar] [CrossRef]
- Finashina, E.D.; Kucherov, A.V.; Kustov, L.M. Effect of the conditions of preparing mixed oxide catalyst of Mo-V-Te-Nb-O composition on its activity in the oxidative dehydrogenation of ethane. Russ. J. Phys. Chem. A 2013, 87, 1983–1988. [Google Scholar] [CrossRef]
- Chu, B.; Truter, L.; Nijhuis, T.A.; Cheng, Y. Oxidative dehydrogenation of ethane to ethylene over phase-pure M1 MoVNbTeOx catalysts in a micro-channel reactor. Catal. Sci. Technol. 2015, 5, 2807–2813. [Google Scholar] [CrossRef]
- Gaffneya, A.M.; Masona, O.M. Ethylene production via Oxidative Dehydrogenation of Ethane using M1 catalyst. Catal. Today 2017, 285, 159–165. [Google Scholar] [CrossRef]
- Mishanin, I.I.; Bogdan, V.I. Advantages of ethane oxidative dehydrogenation on the MoVNbTeOx catalyst under elevated pressure. Mend. Commun. 2019, 29, 455–457. [Google Scholar] [CrossRef]
- Ishikawa, S.; Murayama, T.; Kumaki, M.; Tashiro, M.; Zhang, Z.; Yoshida, A.; Ueda, W. Synthesis of Trigonal Mo–V–M3rd–O (M3rd = Fe, W) Catalysts by Using Structure-Directing Agent and Catalytic Performances for Selective Oxidation of Ethane. Top. Catal. 2016, 59, 1477–1488. [Google Scholar] [CrossRef]
- Cheng, M.-J.; Goddard, W.A. In Silico Design of Highly Selective Mo-V-Te-Nb-O Mixed Metal Oxide Catalysts for Ammoxidation and Oxidative Dehydrogenation of Propane and Ethane. J. Am. Chem. Soc. 2015, 137, 13224–13227. [Google Scholar] [CrossRef]
- Le, T.M.N.; Checa, R.; Bargiela, P.; Aouine, M.; Millet, J.M.M. New synthesis of pure orthorhombic Mo-V-A oxide phases, where A = Sb, Bi and Pb, and testing for the oxidation of light alkanes. J. Alloys Compd. 2022, 910, 164745. [Google Scholar] [CrossRef]
- Liu, B.; Yan, L.; Zhao, H.; Yang, J.; Zhao, J.; Song, H.; Chou, L. Role of cerium dopants in MoVNbO multi-metal oxide catalysts for selective oxidation of ethane. J. Rare Earths 2022, 40, 753–762. [Google Scholar] [CrossRef]
- Grasselli, R.K.; Buttrey, D.J.; Burrington, J.D.; Andersson, A.; Holmberg, J.; Ueda, W.; Kubo, J.; Lugmair, C.G.; Volpe, A.F., Jr. Active centers, catalytic behavior, symbiosis and redox properties of MoV(Nb,Ta)TeO ammoxidation catalysts. Top. Catal. 2006, 38, 7–16. [Google Scholar] [CrossRef]
Spectrum | Mo | V | Te | Nb | O |
---|---|---|---|---|---|
1 | 17.88 | 5.72 | 2.25 | 1.82 | 72.32 |
2 | 17.15 | 5.59 | 2.29 | 1.83 | 73.13 |
3 | 16.61 | 5.33 | 2.24 | 1.72 | 74.10 |
Average | 17.21 | 5.55 | 2.26 | 1.79 | 73.18 |
Standard deviation | 0.64 | 0.20 | 0.03 | 0.06 | 0.89 |
Max. | 17.88 | 5.72 | 2.29 | 1.83 | 74.10 |
Min. | 16.61 | 5.33 | 2.2 | 1.72 | 72.32 |
XPS Line | Binding Energy, eV | State |
---|---|---|
Mo 3d5/2 | 233.2 | Mo+6 |
Nb 3d5/2 | 207.4 | Nb+5 |
V 2p3/2 | 517.1 | V+5 |
Te 3d5/2 | 577.0 | Te+6 |
X, % | Oven Heated | mw-1 (Pure) | mw-2 (Diluted) | |||
---|---|---|---|---|---|---|
T, 0C | S, % | T, 0C | S, % | T, 0C | S, % | |
10 | 320 | 98.8 | 223 | 98.7 | 305 | 98.8 |
15 | 338 | 98.6 | 233 | 98.2 | 328 | 98.6 |
20 | 348 | 98.4 | 242 | 97.5 | 340 | 98.2 |
25 | 357 | 98.1 | 250 | 96.8 | 351 | 97.9 |
30 | 364 | 97.8 | 258 | 96.0 | 362 | 97.7 |
35 | 371 | 97.3 | 267 | 95.2 | 370 | 97.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kucherov, A.V.; Davshan, N.A.; Finashina, E.D.; Kustov, L. Microwave Heating of the Catalyst Bed as a Way of Energy-Saving Oxidative Dehydrogenation of Ethane on a Mo-V-Te-Nb-Ox Catalyst. Nanomaterials 2022, 12, 4459. https://doi.org/10.3390/nano12244459
Kucherov AV, Davshan NA, Finashina ED, Kustov L. Microwave Heating of the Catalyst Bed as a Way of Energy-Saving Oxidative Dehydrogenation of Ethane on a Mo-V-Te-Nb-Ox Catalyst. Nanomaterials. 2022; 12(24):4459. https://doi.org/10.3390/nano12244459
Chicago/Turabian StyleKucherov, Alexei V., Nikolai A Davshan, Elena D. Finashina, and Leonid Kustov. 2022. "Microwave Heating of the Catalyst Bed as a Way of Energy-Saving Oxidative Dehydrogenation of Ethane on a Mo-V-Te-Nb-Ox Catalyst" Nanomaterials 12, no. 24: 4459. https://doi.org/10.3390/nano12244459
APA StyleKucherov, A. V., Davshan, N. A., Finashina, E. D., & Kustov, L. (2022). Microwave Heating of the Catalyst Bed as a Way of Energy-Saving Oxidative Dehydrogenation of Ethane on a Mo-V-Te-Nb-Ox Catalyst. Nanomaterials, 12(24), 4459. https://doi.org/10.3390/nano12244459