A State-of-the-Art of Metal-Organic Frameworks for Chromium Photoreduction vs. Photocatalytic Water Remediation
Abstract
:1. Introduction
1.1. Photocatalysis for Hexavalent Chromium Detoxification
1.2. Photocatalytic Materials for Hexavalent Chromium Reduction
1.3. Metal-Organic Frameworks as Dual Function Sorbent/Photocatalysts
2. Experimental Protocols
2.1. Chemical Stability of MOFs
2.2. Photochemical Characterization
2.3. Adsorption Kinetics/Capacity and Photocatalysis
2.4. Post-Operation Characterization
3. Metal-Organic Frameworks for Hexavalent Chromium Photoreduction and Capture
3.1. Divalent Metal-Based Metal-Organic Framework Photocatalysts
Metal Center | MOFs | pH | Light Source | [Cr (VI)]0 (ppms) | Photocatalyst Loading (g/L) | Photo-Oxidation Efficiency | Ref. | |
---|---|---|---|---|---|---|---|---|
Removal Percentage (%) | Time (min) | |||||||
Zn | ZnO@ZIF-8 | 7 | UV | 20 | 1 | 88 | 240 | [202] |
ZIF-8@Cd0.5Zn0.5S | 6 | Vis. | 20 | 1 | 100 | 10 | [203] | |
MoO3@ZIF-8 | Vis. | 20 | 0.5 | 96 | 40 | [204] | ||
ZIF-8@CuPd | 1 | Vis. | 20 | 0.20 | 89 | 60 | [205] | |
BUC-21 | 2 | UV | 10 | 0.75 | 96 | 30 | [205] | |
TNT@BUC-21 | 5 | UV | 10 | 0.16 | 100 | 20 | [206] | |
BUC-21 and g-C3N4 | 2 | SL | 10 | 0.25 | 100 | 60 | [207] | |
BUC-21 and Bi24O31Br10 | 2 | Vis. | 10 | 0.25 | 99 | 120 | [208] | |
NNU-36 | 2 | Vis. | 10 | 0.38 | 95.3 | 60 | [209] | |
MOF-Zn-BPEA | 3 | Vis. | 10 | 0.38 | 92 | 50 | [210] | |
Zn-MOF [a] | 2 | SL | 20 | 1 | 93 | 90 | [206] | |
MIL-101/Pd-Cu | NR | Vis. | NR | NR | 100 | 30 | [211] | |
Zn-PA-MOF | 2–6 | UV | 20 | 0.4 | 98 | 90 | [212] | |
Cd | BUC-66 | 2 | UV | 10 | 0.075 | 98 | 30 | [213,214] |
Co | BUC-67 | 99 | 30 | |||||
Cd | Cd(4-Hptz)2.(H2O)2]n | 3 | UV | 10 | 0.175 | 100 | 50 | [210] |
- (i)
- (ii)
- (iii)
3.2. Trivalent-Metal-Based Metal-Organic Framework Photocatalysts
3.3. Tetravalent-Metal-Based Metal-Organic Framework Photocatalysts
4. Multivariate Metal-Organic Frameworks for Chromium Photoreduction
5. Future Perspectives of MOFs for Chromium Photoreduction
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sun, W.; Xu, X.; Lv, Z.; Mao, H.; Wu, J. Environmental Impact Assessment of Wastewater Discharge with Multi-Pollutants from Iron and Steel Industry. J. Environ. Manag. 2019, 245, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Marinho, B.A.; Cristóvão, R.O.; Boaventura, R.A.R.; Vilar, V.J.P. As(III) and Cr(VI) Oxyanion Removal from Water by Advanced Oxidation/Reduction Processes—A Review. Environ. Sci. Pollut. Res. 2019, 26, 2203–2227. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Singh, S.P.; Parakh, S.K.; Tong, Y.W. Health Hazards of Hexavalent Chromium (Cr (VI)) and Its Microbial Reduction. Bioengineered 2022, 13, 4923–4938. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Dai, M.; Zhan, X.; Wang, S.; He, Z. Carbon Nanotubes and Graphene Composites Used in Cr(VI) Detection Techniques: A Review. J. Alloys Compd. 2022, 922, 166268. [Google Scholar] [CrossRef]
- De Ruiter, G.; Gupta, T.; van der Boom, M.E. Selective Optical Recognition and Quantification of Parts Per Million Levels of Cr6+ in Aqueous and Organic Media by Immobilized Polypyridyl Complexes on Glass. J. Am. Chem. Soc. 2008, 130, 2744–2745. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S. Sensors for Detection of Cr(VI) in Water: A Review. Int. J. Environ. Anal. Chem. 2021, 101, 1051–1073. [Google Scholar] [CrossRef]
- Xing, Y.; Chen, X.; Wang, D. Electrically Regenerated Ion Exchange for Removal and Recovery of Cr(VI) from Wastewater. Environ. Sci. Technol. 2007, 41, 1439–1443. [Google Scholar] [CrossRef]
- Sandoval-Olvera, I.G.; González-Muñoz, P.; Palacio, L.; Hernández, A.; Ávila-Rodríguez, M.; Prádanos, P. Ultrafiltration Membranes Modified by PSS Deposition and Plasma Treatment for Cr(VI) Removal. Sep. Purif. Technol. 2019, 210, 371–381. [Google Scholar] [CrossRef]
- Yang, L.; Xiao, Y.; Liu, S.; Li, Y.; Cai, Q.; Luo, S.; Zeng, G. Photocatalytic Reduction of Cr(VI) on WO3 Doped Long TiO2 Nanotube Arrays in the Presence of Citric Acid. Appl. Catal. B Environ. 2010, 94, 142–149. [Google Scholar] [CrossRef]
- Gan, M.; Huang, D.; Chen, F.; Zhang, K.; Zhu, J. Enhanced Cr(VI) Reduction and Cr(III) Coprecipitation through the Synergistic Effect between Sulfide Minerals and Chemoautotrophic Decomposer. J. Environ. Chem. Eng. 2021, 9, 105942. [Google Scholar] [CrossRef]
- Arslan, H.; Eskikaya, O.; Bilici, Z.; Dizge, N.; Balakrishnan, D. Comparison of Cr(VI) Adsorption and Photocatalytic Reduction Efficiency Using Leonardite Powder. Chemosphere 2022, 300, 134492. [Google Scholar] [CrossRef] [PubMed]
- Galani, A.; Mamais, D.; Noutsopoulos, C.; Anastopoulou, P.; Varouxaki, A. Biotic and Abiotic Biostimulation for the Reduction of Hexavalent Chromium in Contaminated Aquifers. Water 2022, 14, 89. [Google Scholar] [CrossRef]
- Zhang, X.; Tong, S.; Huang, D.; Liu, Z.; Shao, B.; Liang, Q.; Wu, T.; Pan, Y.; Huang, J.; Liu, Y.; et al. Recent Advances of Zr Based Metal Organic Frameworks Photocatalysis: Energy Production and Environmental Remediation. Coord. Chem. Rev. 2021, 448, 214177. [Google Scholar] [CrossRef]
- Belousov, A.; Fukina, D.; Koryagin, A.V. Metal-Organic Framework-Based Heterojunction Photocatalysts for Organic Pollutant Degradation: Design, Construction, and Performances. J. Chem. Technol. Biotechnol. 2022, 97, 2675–2693. [Google Scholar] [CrossRef]
- Wang, T.; Tian, B.; Han, B.; Ma, D.; Sun, M.; Hanif, A.; Xia, D.; Shang, J. Recent Advances on Porous Materials for Synergetic Adsorption and Photocatalysis. Energy Environ. Mater. 2021, 5, 711–730. [Google Scholar] [CrossRef]
- Nosaka, Y.; Nosaka, A.Y. Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chem. Rev. 2017, 117, 11302–11336. [Google Scholar] [CrossRef]
- Panda, J.; Sahu, S.N.; Tripathy, R.R.; Sahoo, T.; Sahu, J.R.; Pattanayak, S.K.; Sahu, R. Metal-Organic Frameworks for Heterogeneous Photocatalysis of Organic Dyes. In Photocatalytic Degradation of Dyes; Elsevier: Amsterdam, The Netherlands, 2021; pp. 489–508. [Google Scholar] [CrossRef]
- Doan, T.L.H.; Nguyen, H.L.; Pham, H.Q.; Pham-Tran, N.-N.; Le, T.N.; Cordova, K.E. Tailoring the Optical Absorption of Water-Stable ZrIV- and HfIV-Based Metal-Organic Framework Photocatalysts. Chem.-Asian J. 2015, 10, 2660–2668. [Google Scholar] [CrossRef]
- Mahata, P.; Madras, G.; Natarajan, S. Novel Photocatalysts for the Decomposition of Organic Dyes Based on Metal-Organic Framework Compounds. J. Phys. Chem. B 2006, 110, 13759–13768. [Google Scholar] [CrossRef]
- Xu, J.; Li, J.; Wu, F.; Zhang, Y. Rapid Photooxidation of As(III) through Surface Complexation with Nascent Colloidal Ferric Hydroxide. Environ. Sci. Technol. 2014, 48, 272–278. [Google Scholar] [CrossRef]
- Ding, W.; Wang, Y.; Yu, Y.; Zhang, X.; Li, J.; Wu, F. Photooxidation of Arsenic(III) to Arsenic(V) on the Surface of Kaolinite Clay. J. Environ. Sci. 2015, 36, 29–37. [Google Scholar] [CrossRef]
- García, A.; Rosales, M.; Thomas, M.; Golemme, G. Arsenic Photocatalytic Oxidation over TiO2-Loaded SBA-15. J. Environ. Chem. Eng. 2021, 9, 106443. [Google Scholar] [CrossRef]
- Rosales, M.; Orive, J.; Espinoza-González, R.; Fernández de Luis, R.; Gauvin, R.; Brodusch, N.; Rodríguez, B.; Gracia, F.; García, A. Evaluating the Bi-Functional Capacity for Arsenic Photo-Oxidation and Adsorption on Anatase TiO2 Nanostructures with Tunable Morphology. Chem. Eng. J. 2021, 415, 128906. [Google Scholar] [CrossRef]
- Valverde, A.; Gsaiz, P.; Orive, J.; Larrea, E.; Reizabal-Para, A.; Tovar, G.; Copello, G.; Lázaro-Martinez, J.M.; Rodriguez, B.; Gonzalez-Navarrete, B.; et al. Porous, Lightweight, Metal Organic Materials. In Advanced Lightweight Multifunctional Materials; Elsevier: Amsterdam, The Netherlands, 2021; pp. 43–129. [Google Scholar] [CrossRef]
- Rosales, M.; Garcia, A.; Fuenzalida, V.M.; Espinoza-González, R.; Song, G.; Wang, B.; Yu, J.; Gracia, F.; Rosenkranz, A. Unprecedented Arsenic Photo-Oxidation Behavior of Few- and Multi-Layer Ti3C2Tx Nano-Sheets. Appl. Mater. Today 2020, 20, 100769. [Google Scholar] [CrossRef]
- Rosales, M.; Zoltan, T.; Yadarola, C.; Mosquera, E.; Gracia, F.; García, A. The Influence of the Morphology of 1D TiO2 Nanostructures on Photogeneration of Reactive Oxygen Species and Enhanced Photocatalytic Activity. J. Mol. Liq. 2019, 281, 59–69. [Google Scholar] [CrossRef]
- Patial, S.; Raizada, P.; Hasija, V.; Singh, P.; Thakur, V.K.; Nguyen, V.-H. Recent Advances in Photocatalytic Multivariate Metal Organic Frameworks-Based Nanostructures toward Renewable Energy and the Removal of Environmental Pollutants. Mater. Today Energy 2021, 19, 100589. [Google Scholar] [CrossRef]
- Zhao, X.; Li, J.; Li, X.; Huo, P.; Shi, W. Design of Metal-Organic Frameworks (MOFs)-Based Photocatalyst for Solar Fuel Production and Photo-Degradation of Pollutants. Chin. J. Catal. 2021, 42, 872–903. [Google Scholar] [CrossRef]
- Zhang, T.; Jin, Y.; Shi, Y.; Li, M.; Li, J.; Duan, C. Modulating Photoelectronic Performance of Metal-Organic Frameworks for Premium Photocatalysis. Coord. Chem. Rev. 2019, 380, 201–229. [Google Scholar] [CrossRef]
- Wen, M.; Li, G.; Liu, H.; Chen, J.; An, T.; Yamashita, H. Metal-Organic Framework-Based Nanomaterials for Adsorption and Photocatalytic Degradation of Gaseous Pollutants: Recent Progress and Challenges. Environ. Sci. Nano 2019, 6, 1006–1025. [Google Scholar] [CrossRef]
- Chambers, M.B.; Wang, X.; Ellezam, L.; Ersen, O.; Fontecave, M.; Sanchez, C.; Rozes, L.; Mellot-Draznieks, C. Maximizing the Photocatalytic Activity of Metal-Organic Frameworks with Aminated-Functionalized Linkers: Substoichiometric Effects in MIL-125-NH2. J. Am. Chem. Soc. 2017, 139, 8222–8228. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.-D.; Jiang, H.-L. Metal-Organic Frameworks for Photocatalysis and Photothermal Catalysis. Acc. Chem. Res. 2019, 52, 356–366. [Google Scholar] [CrossRef]
- Zoltan, T.; Rosales, M.C.; Yadarola, C. Reactive Oxygen Species Quantification and Their Correlation with the Photocatalytic Activity of TiO2 (Anatase and Rutile) Sensitized with Asymmetric Porphyrins. J. Environ. Chem. Eng. 2016, 4, 3967–3980. [Google Scholar] [CrossRef]
- Liu, K.; Gao, Y.; Liu, J.; Wen, Y.; Zhao, Y.; Zhang, K.; Yu, G. Photoreactivity of Metal−Organic Frameworks in Aqueous Solutions: Metal Dependence of Reactive Oxygen Species Production. Environ. Sci. Technol. 2016, 50, 3634–3640. [Google Scholar] [CrossRef] [PubMed]
- Ni, K.; Lan, G.; Lin, W. Nanoscale Metal−Organic Frameworks Generate Reactive Oxygen Species for Cancer Therapy. ACS Cent. Sci. 2020, 6, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Serpone, N.; Emeline, A.V. Semiconductor Photocatalysis—Past, Present, and Future Outlook. J. Phys. Chem. Lett. 2012, 3, 673–677. [Google Scholar] [CrossRef]
- Ramchiary, A. Metal-Oxide Semiconductor Photocatalysts for the Degradation of Organic Contaminants. In Handbook of Smart Photocatalytic Materials; Elsevier: Amsterdam, The Netherlands, 2020; pp. 23–38. [Google Scholar] [CrossRef]
- Ates, M.; Yılmaz, E.; Tanaydın, M.K. Challenges, Novel Applications, and Future Prospects of Chalcogenides and Chalcogenide-Based Nanomaterials for Photocatalysis. In Chalcogenide-Based Nanomaterials as Photocatalysts; Elsevier: Amsterdam, The Netherlands, 2021; pp. 307–337. [Google Scholar] [CrossRef]
- Silva-Gaspar, B.; Martinez-Franco, R.; Pirngruber, G.; Fécant, A.; Diaz, U.; Corma, A. Open-Framework Chalcogenide Materials-from Isolated Clusters to Highly Ordered Structures-and Their Photocalytic Applications. Coord. Chem. Rev. 2022, 453, 214243. [Google Scholar] [CrossRef]
- Schwinghammer, K.; Tuffy, B.; Mesch, M.B.; Wirnhier, E.; Martineau, C.; Taulelle, F.; Schnick, W.; Senker, J.; Lotsch, B.V. Triazine-Based Carbon Nitrides for Visible-Light-Driven Hydrogen Evolution. Angew. Chem. Int. Ed. 2013, 52, 2435–2439. [Google Scholar] [CrossRef]
- Jeon, J.; Kweon, D.H.; Jang, B.J.; Ju, M.J.; Baek, J. Enhancing the Photocatalytic Activity of TiO2 Catalysts. Adv. Sustain. Syst. 2020, 4, 2000197. [Google Scholar] [CrossRef]
- Bavykina, A.; Kolobov, N.; Khan, I.S.; Bau, J.A.; Ramirez, A.; Gascon, J. Metal-Organic Frameworks in Heterogeneous Catalysis: Recent Progress, New Trends, and Future Perspectives. Chem. Rev. 2020, 120, 8468–8535. [Google Scholar] [CrossRef] [Green Version]
- Kuila, A.; Saravanan, P.; Routu, S.; Gopinath, P.; Jang, M.; Wang, C. Improved Charge Carrier Dynamics through a Type II Staggered Ce MOF/Mc BiVO4 n-n Heterojunction for Enhanced Visible Light Utilisation. Appl. Surf. Sci. 2021, 553, 149556. [Google Scholar] [CrossRef]
- Akbarzadeh, E.; Soheili, H.Z.; Hosseinifard, M.; Gholami, M.R. Preparation and Characterization of Novel Ag3VO4/Cu-MOF/RGO Heterojunction for Photocatalytic Degradation of Organic Pollutants. Mater. Res. Bull. 2020, 121, 110621. [Google Scholar] [CrossRef]
- Nguyen, H.T.T.; Tran, K.N.T.; Tran, T.B.; Nguyen, T.T.; Do, S.T.; Nguyen, K.O.T. Visible-Light-Driven Photocatalytic Degradation of Rhodamine B over Bimetallic Cu/Ti-MOFs. Indones. J. Chem. 2022, 22, 429–436. [Google Scholar] [CrossRef]
- Saiz, P.G.; Valverde, A.; Gonzalez-Navarrete, B.; Rosales, M.; Quintero, Y.M.; Fidalgo-Marijuan, A.; Orive, J.; Reizabal, A.; Larrea, E.S.; Arriortua, M.I.; et al. Modulation of the Bifunctional CrVI to CrIII Photoreduction and Adsorption Capacity in ZrIV and TiIV Benchmark Metal-Organic Frameworks. Catalysts 2021, 11, 51. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, C.; Liu, L.; Zhang, T.; Wang, J.; Wang, R.; Du, T.; Yang, C.; Zhang, L.; Xie, L.; et al. A Conductive Network and Dipole Field for Harnessing Photogenerated Charge Kinetics. Adv. Mater. 2021, 33, 2104099. [Google Scholar] [CrossRef] [PubMed]
- Acharya, R.; Naik, B.; Parida, K. Cr(VI) Remediation from Aqueous Environment through Modified-TiO2-Mediated Photocatalytic Reduction. Beilstein J. Nanotechnol. 2018, 9, 1448–1470. [Google Scholar] [CrossRef] [Green Version]
- Kuncewicz, J.; Ząbek, P.; Kruczała, K.; Szaciłowski, K.; Macyk, W. Photocatalysis Involving a Visible Light-Induced Hole Injection in a Chromate(VI)–TiO2 System. J. Phys. Chem. C 2012, 116, 21762–21770. [Google Scholar] [CrossRef]
- Yu, J.; Zhuang, S.; Xu, X.; Zhu, W.; Feng, B.; Hu, J. Photogenerated Electron Reservoir in Hetero-p–n CuO–ZnO Nanocomposite Device for Visible-Light-Driven Photocatalytic Reduction of Aqueous Cr(VI). J. Mater. Chem. A 2015, 3, 1199–1207. [Google Scholar] [CrossRef]
- Yu, T.; Lv, L.; Wang, H.; Tan, X. Enhanced Photocatalytic Treatment of Cr(VI) and Phenol by Monoclinic BiVO4 with {010}-Orientation Growth. Mater. Res. Bull. 2018, 107, 248–254. [Google Scholar] [CrossRef]
- Zebbar, N.; Trari, M.; Doulache, M.; Boughelout, A.; Chabane, L. Physical and Photo-Electrochemical Characterizations of ZnO Thin Films Deposited by Ultrasonic Spray Method: Application to HCrO4−Photoreduction. Appl. Surf. Sci. 2014, 292, 837–842. [Google Scholar] [CrossRef]
- Anthony, E.T.; Oladoja, N.A. Process Enhancing Strategies for the Reduction of Cr(VI) to Cr(III) via Photocatalytic Pathway. Environ. Sci. Pollut. Res. 2022, 29, 8026–8053. [Google Scholar] [CrossRef]
- Qamar, M.; Gondal, M.A.; Yamani, Z.H. Synthesis of Nanostructured NiO and Its Application in Laser-Induced Photocatalytic Reduction of Cr(VI) from Water. J. Mol. Catal. A Chem. 2011, 341, 83–88. [Google Scholar] [CrossRef]
- Wu, J.; Wang, J.; Du, Y.; Li, H.; Yang, Y.; Jia, X. Chemically Controlled Growth of Porous CeO2 Nanotubes for Cr(VI) Photoreduction. Appl. Catal. B Environ. 2015, 174–175, 435–444. [Google Scholar] [CrossRef]
- Shawky, A.; Alahmadi, N.; Mohamed, R.M.; Zaki, Z.I. Bi2S3-Sensitized TiO2 Nanostructures Prepared by Solution Process for Highly Efficient Photoreduction of Hexavalent Chromium Ions in Water under Visible Light. Opt. Mater. 2022, 124, 111964. [Google Scholar] [CrossRef]
- Ye, M.; Wei, W.; Zheng, L.; Liu, Y.; Wu, D.; Gu, X.; Wei, A. Enhanced Visible Light Photoreduction of Aqueous Cr(VI) by Ag/Bi4O7/g-C3N4 Nanosheets Ternary Metal/Non-Metal Z-Scheme Heterojunction. J. Hazard. Mater. 2019, 365, 674–683. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Guo, C.; Sharma, G.; Pathania, D.; Naushad, M.; Kalia, S.; Dhiman, P. Magnetically Recoverable ZrO2/Fe3O4/Chitosan Nanomaterials for Enhanced Sunlight Driven Photoreduction of Carcinogenic Cr(VI) and Dechlorination & Mineralization of 4-Chlorophenol from Simulated Waste Water. RSC Adv. 2016, 6, 13251–13263. [Google Scholar] [CrossRef]
- Ku, Y.; Lin, C.-N.; Hou, W.-M. Characterization of Coupled NiO/TiO2 Photocatalyst for the Photocatalytic Reduction of Cr(VI) in Aqueous Solution. J. Mol. Catal. A Chem. 2011, 349, 20–27. [Google Scholar] [CrossRef]
- Challagulla, S.; Nagarjuna, R.; Ganesan, R.; Roy, S. Acrylate-Based Polymerizable Sol-Gel Synthesis of Magnetically Recoverable TiO2 Supported Fe3O4 for Cr(VI) Photoreduction in Aerobic Atmosphere. ACS Sustain. Chem. Eng. 2016, 4, 974–982. [Google Scholar] [CrossRef]
- Naimi-Joubani, M.; Shirzad-Siboni, M.; Yang, J.-K.; Gholami, M.; Farzadkia, M. Photocatalytic Reduction of Hexavalent Chromium with Illuminated ZnO/TiO2 Composite. J. Ind. Eng. Chem. 2015, 22, 317–323. [Google Scholar] [CrossRef]
- Abdullah, H.; Kuo, D.-H.; Chen, Y.-H. High-Efficient n-Type TiO2/p-Type Cu2O Nanodiode Photocatalyst to Detoxify Hexavalent Chromium under Visible Light Irradiation. J. Mater. Sci. 2016, 51, 8209–8223. [Google Scholar] [CrossRef]
- Lahmar, H.; Rekhila, G.; Trari, M.; Bessekhouad, Y. HCrO4−Reduction on the Novel Heterosystem La2CuO4/SnO2 under Solar Light. Environ. Prog. Sustain. Energy 2015, 34, 744–750. [Google Scholar] [CrossRef]
- Borthakur, P.; Boruah, P.K.; Das, M.R.; Artemkina, S.B.; Poltarak, P.A.; Fedorov, V.E. Metal Free MoS2 2D Sheets as a Peroxidase Enzyme and Visible-Light-Induced Photocatalyst towards Detection and Reduction of Cr(VI) Ions. New J. Chem. 2018, 42, 16919–16929. [Google Scholar] [CrossRef]
- Liu, Y.; Mi, X.; Wang, J.; Li, M.; Fan, D.; Lu, H.; Chen, X. Two-Dimensional SnS 2 Nanosheets Exfoliated from an Inorganic–Organic Hybrid with Enhanced Photocatalytic Activity towards Cr(VI) Reduction. Inorg. Chem. Front. 2019, 6, 948–954. [Google Scholar] [CrossRef]
- Wu, J.; Liu, B.; Ren, Z.; Ni, M.; Li, C.; Gong, Y.; Qin, W.; Huang, Y.; Sun, C.Q.; Liu, X. CuS/RGO Hybrid Photocatalyst for Full Solar Spectrum Photoreduction from UV/Vis to near-Infrared Light. J. Colloid Interface Sci. 2018, 517, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhang, N.; Tang, Z.-R.; Xu, Y.-J. Synthesis of One-Dimensional CdS@TiO2 Core–Shell Nanocomposites Photocatalyst for Selective Redox: The Dual Role of TiO2 Shell. ACS Appl. Mater. Interfaces 2012, 4, 6378–6385. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Xu, Y.-J. Ultrathin TiO2 Layer Coated-CdS Spheres Core–Shell Nanocomposite with Enhanced Visible-Light Photoactivity. ACS Appl. Mater. Interfaces 2013, 5, 13353–13363. [Google Scholar] [CrossRef]
- Liu, X.; Pan, L.; Lv, T.; Sun, Z. CdS Sensitized TiO2 Film for Photocatalytic Reduction of Cr(VI) by Microwave-Assisted Chemical Bath Deposition Method. J. Alloys Compd. 2014, 583, 390–395. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Li, J.; Xu, H.Y. One-Step in Situ Solvothermal Synthesis of SnS2/TiO2 Nanocomposites with High Performance in Visible Light-Driven Photocatalytic Reduction of Aqueous Cr(VI). Appl. Catal. B Environ. 2012, 123–124, 18–26. [Google Scholar] [CrossRef]
- Yuan, Y.-J.; Chen, D.-Q.; Shi, X.-F.; Tu, J.-R.; Hu, B.; Yang, L.-X.; Yu, Z.-T.; Zou, Z.-G. Facile Fabrication of “Green” SnS2 Quantum Dots/Reduced Graphene Oxide Composites with Enhanced Photocatalytic Performance. Chem. Eng. J. 2017, 313, 1438–1446. [Google Scholar] [CrossRef]
- Pudkon, W.; Bahruji, H.; Miedziak, P.J.; Davies, T.E.; Morgan, D.J.; Pattisson, S.; Kaowphong, S.; Hutchings, G.J. Enhanced Visible-Light-Driven Photocatalytic H 2 Production and Cr(VI) Reduction of a ZnIn2S4/MoS2 Heterojunction Synthesized by the Biomolecule-Assisted Microwave Heating Method. Catal. Sci. Technol. 2020, 10, 2838–2854. [Google Scholar] [CrossRef]
- Besharat, F.; Ahmadpoor, F.; Nasrollahzadeh, M. Graphene-Based (Nano)Catalysts for the Reduction of Cr(VI): A Review. J. Mol. Liq. 2021, 334, 116123. [Google Scholar] [CrossRef]
- Hasija, V.; Raizada, P.; Singh, P.; Verma, N.; Khan, A.A.P.; Singh, A.; Selvasembian, R.; Kim, S.Y.; Hussain, C.M.; Nguyen, V.-H.; et al. Progress on the Photocatalytic Reduction of Hexavalent Cr (VI) Using Engineered Graphitic Carbon Nitride. Process Saf. Environ. Prot. 2021, 152, 663–678. [Google Scholar] [CrossRef]
- Liu, X.; Ma, R.; Wang, X.; Ma, Y.; Yang, Y.; Zhuang, L.; Zhang, S.; Jehan, R.; Chen, J.; Wang, X. Graphene Oxide-Based Materials for Efficient Removal of Heavy Metal Ions from Aqueous Solution: A Review. Environ. Pollut. 2019, 252, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.-S.; Hou, W.-C.; Wang, D.K. Photocatalytic Reduction of Cr(VI) by Graphene Oxide Materials under Sunlight or Visible Light: The Effects of Low-Molecular-Weight Chemicals. Environ. Sci. Nano 2020, 7, 2399–2409. [Google Scholar] [CrossRef]
- Ma, H.; Shen, J.; Shi, M.; Lu, X.; Li, Z.; Long, Y.; Li, N.; Ye, M. Significant Enhanced Performance for Rhodamine B, Phenol and Cr(VI) Removal by Bi2WO6 Nancomposites via Reduced Graphene Oxide Modification. Appl. Catal. B Environ. 2012, 121–122, 198–205. [Google Scholar] [CrossRef]
- Chen, A.; Bian, Z.; Xu, J.; Xin, X.; Wang, H. Simultaneous Removal of Cr(VI) and Phenol Contaminants Using Z-Scheme Bismuth Oxyiodide/Reduced Graphene Oxide/Bismuth Sulfide System under Visible-Light Irradiation. Chemosphere 2017, 188, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Shen, S.; Zhao, Y.; Wu, W. Preparation and Characterizations of BiVO4/Reduced Graphene Oxide Nanocomposites with Higher Visible Light Reduction Activities. J. Colloid Interface Sci. 2015, 445, 330–336. [Google Scholar] [CrossRef]
- Liu, X.; Pan, L.; Lv, T.; Sun, Z. Investigation of Photocatalytic Activities over ZnO–TiO2–Reduced Graphene Oxide Composites Synthesized via Microwave-Assisted Reaction. J. Colloid Interface Sci. 2013, 394, 441–444. [Google Scholar] [CrossRef]
- Liu, X.; Pan, L.; Zhao, Q.; Lv, T.; Zhu, G.; Chen, T.; Lu, T.; Sun, Z.; Sun, C. UV-Assisted Photocatalytic Synthesis of ZnO-Reduced Graphene Oxide Composites with Enhanced Photocatalytic Activity in Reduction of Cr(VI). Chem. Eng. J. 2012, 183, 238–243. [Google Scholar] [CrossRef]
- Liu, X.; Pan, L.; Lv, T.; Lu, T.; Zhu, G.; Sun, Z.; Sun, C. Microwave-Assisted Synthesis of ZnO-Graphene Composite for Photocatalytic Reduction of Cr(Vi). Catal. Sci. Technol. 2011, 1, 1189. [Google Scholar] [CrossRef]
- Wang, C.; Cao, M.; Wang, P.; Ao, Y.; Hou, J.; Qian, J. Preparation of Graphene-Carbon Nanotube-TiO2 Composites with Enhanced Photocatalytic Activity for the Removal of Dye and Cr (VI). Appl. Catal. A Gen. 2014, 473, 83–89. [Google Scholar] [CrossRef]
- Hu, X.; Zhao, Y.; Wang, H.; Cai, X.; Hu, X.; Tang, C.; Liu, Y.; Yang, Y. Decontamination of Cr(VI) by Graphene Oxide@TiO2 in an Aerobic Atmosphere: Effects of PH, Ferric Ions, Inorganic Anions, and Formate: Decontamination of Cr(VI) by Graphene Oxide@TiO2. J. Chem. Technol. Biotechnol. 2018, 93, 2226–2233. [Google Scholar] [CrossRef]
- Karthik, P.; Neppolian, B. TiO2-Glucose LMCT Complex/Reduced Graphene Oxide Sheet (RGO): An Efficient Visible Light Photocatalyst for Cr(VI) Reduction. J. Environ. Chem. Eng. 2018, 6, 3664–3672. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, D.; Chen, C.; Wang, X. Enhanced Photo-Reduction and Removal of Cr(VI) on Reduced Graphene Oxide Decorated with TiO2 Nanoparticles. J. Colloid Interface Sci. 2013, 405, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Pan, L.; Lv, T.; Zhu, G.; Lu, T.; Sun, Z.; Sun, C. Microwave-Assisted Synthesis of TiO2-Reduced Graphene Oxide Composites for the Photocatalytic Reduction of Cr(Vi). RSC Adv. 2011, 1, 1245. [Google Scholar] [CrossRef]
- Kumar, K.V.A.; Chandana, L.; Ghosal, P.; Subrahmanyam, C. Simultaneous Photocatalytic Degradation of p-Cresol and Cr(VI) by Metal Oxides Supported Reduced Graphene Oxide. Mol. Catal. 2018, 451, 87–95. [Google Scholar] [CrossRef]
- Wang, C.; Long, M.; Tan, B.; Zheng, L.; Cai, J.; Fu, J. Facilitated Photoinduced Electron Storage and Two-Electron Reduction of Oxygen by Reduced Graphene Oxide in RGO/TiO2/WO3 Composites. Electrochim. Acta 2017, 250, 108–116. [Google Scholar] [CrossRef]
- Padhi, D.K.; Panigrahi, T.K.; Parida, K.; Singh, S.K.; Mishra, P.M. Green Synthesis of Fe3O4/RGO Nanocomposite with Enhanced Photocatalytic Performance for Cr(VI) Reduction, Phenol Degradation, and Antibacterial Activity. ACS Sustain. Chem. Eng. 2017, 5, 10551–10562. [Google Scholar] [CrossRef]
- Raza, W.; Faraz, M. Novel G-C3N4/Fe-ZnO/RGO Nanocomposites with Boosting Visible Light Photocatalytic Activity for MB, Cr (VI), and Outstanding Catalytic Activity toward Para-Nitrophenol Reduction. Nanotechnology 2020, 31, 325603. [Google Scholar] [CrossRef]
- Zhang, F.; Wen, Q.; Hong, M.; Zhuang, Z.; Yu, Y. Efficient and Sustainable Metal-Free GR/C3N4/CDots Ternary Heterostructrues for Versatile Visible-Light-Driven Photoredox Applications: Toward Synergistic Interaction of Carbon Materials. Chem. Eng. J. 2017, 307, 593–603. [Google Scholar] [CrossRef]
- Xiao, W.; Zhou, W.; Zhang, Y.; Tian, L.; Liu, H.; Pu, Y. Three-Dimensional Zn0.5Cd0.5S/Reduced Graphene Oxide Hybrid Aerogel: Facile Synthesis and the Visible-Light-Driven Photocatalytic Property for Reduction of Cr(VI) in Water. J. Nanomater. 2016, 2016, 6201546. [Google Scholar] [CrossRef] [Green Version]
- Palve, A.M.; Kokil, D.N. One-Pot Synthesis of ZnS-RGO Nanocomposites Using Single-Source Molecular Precursor for Photodegradation of Methylene Blue and Reduction towards Toxic Cr(VI) under Solar Light. Mater. Res. Express 2019, 6, 105536. [Google Scholar] [CrossRef]
- Ren, Z.; Li, L.; Liu, B.; Liu, X.; Li, Z.; Lei, X.; Li, C.; Gong, Y.; Niu, L.; Pan, L. Cr(VI) Reduction in Presence of ZnS/RGO Photocatalyst under Full Solar Spectrum Radiation from UV/Vis to near-Infrared Light. Catal. Today 2018, 315, 46–51. [Google Scholar] [CrossRef]
- Bano, Z.; Saeed, R.M.Y.; Zhu, S.; Xia, M.; Mao, S.; Lei, W.; Wang, F. Mesoporous CuS Nanospheres Decorated RGO Aerogel for High Photocatalytic Activity towards Cr(VI) and Organic Pollutants. Chemosphere 2020, 246, 125846. [Google Scholar] [CrossRef] [PubMed]
- Borthakur, P.; Das, M.R.; Szunerits, S.; Boukherroub, R. CuS Decorated Functionalized Reduced Graphene Oxide: A Dual Responsive Nanozyme for Selective Detection and Photoreduction of Cr(VI) in an Aqueous Medium. ACS Sustain. Chem. Eng. 2019, 7, 16131–16143. [Google Scholar] [CrossRef]
- Mohammadian Fard, Z.; Bagheri, M.; Rabieh, S.; Mousavi, H.Z. Efficient Visible Light-Driven Core–Shell-Structured ZnS@Ag 2 S Nanoparticles-Anchored Reduced Graphene Oxide for the Reduction of Cr(VI). New J. Chem. 2020, 44, 14670–14678. [Google Scholar] [CrossRef]
- Abulizi, A.; Zhou, L.; Kadeer, K.; Tursun, Y.; Talifu, D. Photo-Ultrasonic Assisted in-Situ Synthesis of RGO/Ag2CrO4 Photocatalyst with High Photocatalytic Activity and Stability under Visible Light. Mater. Sci. Semicond. Process. 2018, 86, 69–78. [Google Scholar] [CrossRef]
- Li, M.; Hu, Q.; Shan, H.; Yu, W.; Xu, Z.-X. Fabrication of Copper Phthalocyanine/Reduced Graphene Oxide Nanocomposites for Efficient Photocatalytic Reduction of Hexavalent Chromium. Chemosphere 2021, 263, 128250. [Google Scholar] [CrossRef]
- Li, M.; Hu, Q.; Shan, H.; Chen, Q.; Wang, X.; Pan, J.H.; Xu, Z.-X. In Situ Synthesis of N-CoMe2Pc/RGO Nanocomposite with Enhanced Photocatalytic Activity and Stability in Cr(VI) Reduction. J. Chem. Phys. 2020, 152, 154702. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A Metal-Free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light. Nat. Mater. 2009, 8, 76–80. [Google Scholar] [CrossRef]
- Mukherjee, D.; Van der Bruggen, B.; Mandal, B. Advancements in Visible Light Responsive MOF Composites for Photocatalytic Decontamination of Textile Wastewater: A Review. Chemosphere 2022, 295, 133835. [Google Scholar] [CrossRef]
- Behera, P.; Subudhi, S.; Tripathy, S.P.; Parida, K. MOF Derived Nano-Materials: A Recent Progress in Strategic Fabrication, Characterization and Mechanistic Insight towards Divergent Photocatalytic Applications. Coord. Chem. Rev. 2022, 456, 214392. [Google Scholar] [CrossRef]
- Ramalingam, G.; Pachaiappan, R.; Kumar, P.S.; Dharani, S.; Rajendran, S.; Vo, D.-V.N.; Hoang, T.K.A. Hybrid Metal Organic Frameworks as an Exotic Material for the Photocatalytic Degradation of Pollutants Present in Wastewater: A Review. Chemosphere 2022, 288, 132448. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, L.; Qin, L.; Lai, C.; Wang, Z.; Zhou, M.; Xiao, L.; Liu, S.; Zhang, M. Recent Advances in the Application of Water-Stable Metal-Organic Frameworks: Adsorption and Photocatalytic Reduction of Heavy Metal in Water. Chemosphere 2021, 285, 131432. [Google Scholar] [CrossRef] [PubMed]
- Azimi, A.; Azari, A.; Rezakazemi, M.; Ansarpour, M. Removal of Heavy Metals from Industrial Wastewaters: A Review. ChemBioEng Rev. 2017, 4, 37–59. [Google Scholar] [CrossRef]
- Joseph, L.; Jun, B.-M.; Flora, J.R.V.; Park, C.M.; Yoon, Y. Removal of Heavy Metals from Water Sources in the Developing World Using Low-Cost Materials: A Review. Chemosphere 2019, 229, 142–159. [Google Scholar] [CrossRef] [PubMed]
- Tachikawa, T.; Choi, J.R.; Fujitsuka, M.; Majima, T. Photoinduced Charge-Transfer Processes on MOF-5 Nanoparticles: Elucidating Differences between Metal-Organic Frameworks and Semiconductor Metal Oxides. J. Phys. Chem. C 2008, 112, 14090–14101. [Google Scholar] [CrossRef]
- Freund, R.; Zaremba, O.; Arnauts, G.; Ameloot, R.; Skorupskii, G.; Dincă, M.; Bavykina, A.; Gascon, J.; Ejsmont, A.; Goscianska, J.; et al. The Current Status of MOF and COF Applications. Angew. Chem. Int. Ed. 2021, 60, 23975–24001. [Google Scholar] [CrossRef]
- Freund, R.; Canossa, S.; Cohen, S.M.; Yan, W.; Deng, H.; Guillerm, V.; Eddaoudi, M.; Madden, D.G.; Fairen-Jimenez, D.; Lyu, H.; et al. 25 Years of Reticular Chemistry. Angew. Chem. Int. Ed. 2021, 60, 23946–23974. [Google Scholar] [CrossRef]
- Ji, Z.; Freund, R.; Diercks, C.S.; Hirschle, P.; Yaghi, O.M.; Wuttke, S. From Molecules to Frameworks to Superframework Crystals. Adv. Mater. 2021, 33, 2103808. [Google Scholar] [CrossRef] [PubMed]
- Ejsmont, A.; Andreo, J.; Lanza, A.; Galarda, A.; Macreadie, L.; Wuttke, S.; Canossa, S.; Ploetz, E.; Goscianska, J. Applications of Reticular Diversity in Metal-Organic Frameworks: An Ever-Evolving State of the Art. Coord. Chem. Rev. 2021, 430, 213655. [Google Scholar] [CrossRef]
- Canossa, S.; Wuttke, S. Functionalization Chemistry of Porous Materials. Adv. Funct. Mater. 2020, 30, 2003875. [Google Scholar] [CrossRef]
- Ji, Z.; Wang, H.; Canossa, S.; Wuttke, S.; Yaghi, O.M. Pore Chemistry of Metal-Organic Frameworks. Adv. Funct. Mater. 2020, 30, 2000238. [Google Scholar] [CrossRef]
- Ploetz, E.; Engelke, H.; Lächelt, U.; Wuttke, S. The Chemistry of Reticular Framework Nanoparticles: MOF, ZIF, and COF Materials. Adv. Funct. Mater. 2020, 30, 1909062. [Google Scholar] [CrossRef] [Green Version]
- Lyu, H.; Ji, Z.; Wuttke, S.; Yaghi, O.M. Digital Reticular Chemistry. Chem 2020, 6, 2219–2241. [Google Scholar] [CrossRef]
- Canossa, S.; Ji, Z.; Wuttke, S. Circumventing Wear and Tear of Adaptive Porous Materials. Adv. Funct. Mater. 2020, 30, 1908547. [Google Scholar] [CrossRef]
- Alvaro, M.; Carbonell, E.; Ferrer, B.; Llabrés i Xamena, F.X.; Garcia, H. Semiconductor Behavior of a Metal-Organic Framework (MOF). Chem. Eur. J. 2007, 13, 5106–5112. [Google Scholar] [CrossRef]
- Guo, X.; Liu, L.; Xiao, Y.; Qi, Y.; Duan, C.; Zhang, F. Band Gap Engineering of Metal-Organic Frameworks for Solar Fuel Productions. Coord. Chem. Rev. 2021, 435, 213785. [Google Scholar] [CrossRef]
- Joseph, J.; Iftekhar, S.; Srivastava, V.; Fallah, Z.; Zare, E.N.; Sillanpää, M. Iron-Based Metal-Organic Framework: Synthesis, Structure and Current Technologies for Water Reclamation with Deep Insight into Framework Integrity. Chemosphere 2021, 284, 131171. [Google Scholar] [CrossRef]
- Shen, Y.; Pan, T.; Wang, L.; Ren, Z.; Zhang, W.; Huo, F. Programmable Logic in Metal-Organic Frameworks for Catalysis. Adv. Mater. 2021, 33, 2007442. [Google Scholar] [CrossRef]
- Fuchs, A.; Mannhardt, P.; Hirschle, P.; Wang, H.; Zaytseva, I.; Ji, Z.; Yaghi, O.; Wuttke, S.; Ploetz, E. Single Crystals Heterogeneity Impacts the Intrinsic and Extrinsic Properties of Metal-Organic Frameworks. Adv. Mater. 2022, 34, 2104530. [Google Scholar] [CrossRef]
- Lin, L.-D.; Zhao, D.; Li, X.-X.; Zheng, S.-T. Recent Advances in Zeolite-like Cluster Organic Frameworks. Chem. Eur. J. 2019, 25, 442–453. [Google Scholar] [CrossRef]
- Yang, D.; Babucci, M.; Casey, W.H.; Gates, B.C. The Surface Chemistry of Metal Oxide Clusters: From Metal-Organic Frameworks to Minerals. ACS Cent. Sci. 2020, 6, 1523–1533. [Google Scholar] [CrossRef] [PubMed]
- Ji, Z.; Li, T.; Yaghi, O.M. Sequencing of Metals in Multivariate Metal-Organic Frameworks. Science 2020, 369, 674–680. [Google Scholar] [CrossRef] [PubMed]
- Schrimpf, W.; Jiang, J.; Ji, Z.; Hirschle, P.; Lamb, D.C.; Yaghi, O.M.; Wuttke, S. Chemical Diversity in a Metal-Organic Framework Revealed by Fluorescence Lifetime Imaging. Nat. Commun. 2018, 9, 1647. [Google Scholar] [CrossRef]
- Nguyen, H.G.T.; Mao, L.; Peters, A.W.; Audu, C.O.; Brown, Z.J.; Farha, O.K.; Hupp, J.T.; Nguyen, S.T. Comparative Study of Titanium-Functionalized UiO-66: Support Effect on the Oxidation of Cyclohexene Using Hydrogen Peroxide. Catal. Sci. Technol. 2015, 5, 4444–4451. [Google Scholar] [CrossRef]
- Hon Lau, C.; Babarao, R.; Hill, M.R. A Route to Drastic Increase of CO2 Uptake in Zr Metal Organic Framework UiO-66. Chem. Commun. 2013, 49, 3634. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Zhou, Y.; Wang, Z.; Chen, M.; Sun, L.; Liu, X. Titanium Incorporated with UiO-66(Zr)-Type Metal-Organic Framework (MOF) for Photocatalytic Application. RSC Adv. 2016, 6, 3671–3679. [Google Scholar] [CrossRef]
- Wang, L.J.; Deng, H.; Furukawa, H.; Gándara, F.; Cordova, K.E.; Peri, D.; Yaghi, O.M. Synthesis and Characterization of Metal-Organic Framework-74 Containing 2, 4, 6, 8, and 10 Different Metals. Inorg. Chem. 2014, 53, 5881–5883. [Google Scholar] [CrossRef]
- Hao, J.; Xu, X.; Fei, H.; Li, L.; Yan, B. Functionalization of Metal-Organic Frameworks for Photoactive Materials. Adv. Mater. 2018, 30, 1705634. [Google Scholar] [CrossRef]
- Mandal, S.; Natarajan, S.; Mani, P.; Pankajakshan, A. Post-Synthetic Modification of Metal-Organic Frameworks toward Applications. Adv. Funct. Mater. 2021, 31, 2006291. [Google Scholar] [CrossRef]
- Al Danaf, N.; Schrimpf, W.; Hirschle, P.; Lamb, D.C.; Ji, Z.; Wuttke, S. Linker Exchange via Migration along the Backbone in Metal-Organic Frameworks. J. Am. Chem. Soc. 2021, 143, 10541–10546. [Google Scholar] [CrossRef]
- Saiz, P.G.; Iglesias, N.; González Navarrete, B.; Rosales, M.; Quintero, Y.M.; Reizabal, A.; Orive, J.; Fidalgo Marijuan, A.; Larrea, E.S.; Lopes, A.C.; et al. Chromium Speciation in Zirconium-Based Metal-Organic Frameworks for Environmental Remediation. Chem. Eur. J. 2020, 26, 13861–13872. [Google Scholar] [CrossRef] [PubMed]
- Valverde, A.; Payno, D.; Lezama, L.; Wuttke, S.; Fernández de Luis, R. Multivariate Functionalization of UiO-66 for Photocatalytic Water Remediation. Adv. Sustain. Syst. 2022, 6, 2200024. [Google Scholar] [CrossRef]
- Li, G.; Zhao, S.; Zhang, Y.; Tang, Z. Metal-Organic Frameworks Encapsulating Active Nanoparticles as Emerging Composites for Catalysis: Recent Progress and Perspectives. Adv. Mater. 2018, 30, 1800702. [Google Scholar] [CrossRef]
- Schukraft, G.E.M.; Moss, B.; Kafizas, A.G.; Petit, C. Effect of Band Bending in Photoactive MOF-Based Heterojunctions. ACS Appl. Mater. Interfaces 2022, 14, 19342–19352. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Wu, B.; Shi, W.; Cheng, P. Metal-Organic Framework-Derived Heterojunctions as Nanocatalysts for Photocatalytic Hydrogen Production. Inorg. Chem. Front. 2019, 6, 3456–3467. [Google Scholar] [CrossRef]
- Das, S.; Pérez-Ramírez, J.; Gong, J.; Dewangan, N.; Hidajat, K.; Gates, B.C.; Kawi, S. Core–Shell Structured Catalysts for Thermocatalytic, Photocatalytic, and Electrocatalytic Conversion of CO2. Chem. Soc. Rev. 2020, 49, 2937–3004. [Google Scholar] [CrossRef]
- Xiao, Y.-H.; Gu, Z.-G.; Zhang, J. Surface-Coordinated Metal-Organic Framework Thin Films (SURMOFs) for Electrocatalytic Applications. Nanoscale 2020, 12, 12712–12730. [Google Scholar] [CrossRef]
- Nugmanova, A.G.; Safonova, E.A.; Baranchikov, A.E.; Tameev, A.R.; Shkolin, A.V.; Mitrofanov, A.A.; Eliseev, A.A.; Meshkov, I.N.; Kalinina, M.A. Interfacial Self-Assembly of Porphyrin-Based SURMOF/Graphene Oxide Hybrids with Tunable Pore Size: An Approach toward Size-Selective Ambivalent Heterogeneous Photocatalysts. Appl. Surf. Sci. 2022, 579, 152080. [Google Scholar] [CrossRef]
- Li, Z.; Rayder, T.M.; Luo, L.; Byers, J.A.; Tsung, C.-K. Aperture-Opening Encapsulation of a Transition Metal Catalyst in a Metal-Organic Framework for CO2 Hydrogenation. J. Am. Chem. Soc. 2018, 140, 8082–8085. [Google Scholar] [CrossRef]
- Jiang, Z.; Xu, X.; Ma, Y.; Cho, H.S.; Ding, D.; Wang, C.; Wu, J.; Oleynikov, P.; Jia, M.; Cheng, J.; et al. Filling Metal-Organic Framework Mesopores with TiO2 for CO2 Photoreduction. Nature 2020, 586, 549–554. [Google Scholar] [CrossRef]
- Shanahan, J.; Kissel, D.S.; Sullivan, E. PANI@UiO-66 and PANI@UiO-66-NH 2 Polymer-MOF Hybrid Composites as Tunable Semiconducting Materials. ACS Omega 2020, 5, 6395–6404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawson, S.; Alwakwak, A.-A.; Rownaghi, A.A.; Rezaei, F. Gel-Print-Grow: A New Way of 3D Printing Metal-Organic Frameworks. ACS Appl. Mater. Interfaces 2020, 12, 56108–56117. [Google Scholar] [CrossRef] [PubMed]
- Pianca, D.; Carboni, M.; Meyer, D. 3D-Printing of Porous Materials: Application to Metal-Organic Frameworks. Mater. Lett. X 2022, 13, 100121. [Google Scholar] [CrossRef]
- Mallakpour, S.; Azadi, E.; Hussain, C.M. MOF/COF-Based Materials Using 3D Printing Technology: Applications in Water Treatment, Gas Removal, Biomedical, and Electronic Industries. New J. Chem. 2021, 45, 13247–13257. [Google Scholar] [CrossRef]
- Gartner, Z.J.; Hu, J.L. Guiding Tissue-Scale Self-Organization. Nat. Mater. 2021, 20, 2–3. [Google Scholar] [CrossRef]
- Haase, F.; Hirschle, P.; Freund, R.; Furukawa, S.; Ji, Z.; Wuttke, S. Beyond Frameworks: Structuring Reticular Materials across Nano-, Meso-, and Bulk Regimes. Angew. Chem. Int. Ed. 2020, 59, 22350–22370. [Google Scholar] [CrossRef]
- Andreo, J.; Ettlinger, R.; Zaremba, O.; Peña, Q.; Lächelt, U.; de Luis, R.F.; Freund, R.; Canossa, S.; Ploetz, E.; Zhu, W.; et al. Reticular Nanoscience: Bottom-Up Assembly Nanotechnology. J. Am. Chem. Soc. 2022, 144, 7531–7550. [Google Scholar] [CrossRef]
- Hwang, J.; Ejsmont, A.; Freund, R.; Goscianska, J.; Schmidt, B.V.K.J.; Wuttke, S. Controlling the Morphology of Metal-Organic Frameworks and Porous Carbon Materials: Metal Oxides as Primary Architecture-Directing Agents. Chem. Soc. Rev. 2020, 49, 3348–3422. [Google Scholar] [CrossRef]
- Yao, Z.; Sánchez-Lengeling, B.; Bobbitt, N.S.; Bucior, B.J.; Kumar, S.G.H.; Collins, S.P.; Burns, T.; Woo, T.K.; Farha, O.K.; Snurr, R.Q.; et al. Inverse Design of Nanoporous Crystalline Reticular Materials with Deep Generative Models. Nat. Mach. Intell. 2021, 3, 76–86. [Google Scholar] [CrossRef]
- Luo, Y.; Bag, S.; Zaremba, O.; Cierpka, A.; Andreo, J.; Wuttke, S.; Friederich, P.; Tsotsalas, M. MOF Synthesis Prediction Enabled by Automatic Data Mining and Machine Learning. Angew. Chem. Int. Ed. 2022, 61, e202200242. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, V.; Kim, K.-H.; Kwon, E.E.; Younis, S.A. Metal-Organic Frameworks for Photocatalytic Detoxification of Chromium and Uranium in Water. Coord. Chem. Rev. 2021, 447, 214148. [Google Scholar] [CrossRef]
- Wang, C.-C.; Du, X.-D.; Li, J.; Guo, X.-X.; Wang, P.; Zhang, J. Photocatalytic Cr(VI) Reduction in Metal-Organic Frameworks: A Mini-Review. Appl. Catal. B Environ. 2016, 193, 198–216. [Google Scholar] [CrossRef]
- Jafarzadeh, M. Recent Progress in the Development of MOF-Based Photocatalysts for the Photoreduction of Cr(VI). ACS Appl. Mater. Interfaces 2022, 14, 24993–25024. [Google Scholar] [CrossRef] [PubMed]
- Burtch, N.C.; Jasuja, H.; Walton, K.S. Water Stability and Adsorption in Metal-Organic Frameworks. Chem. Rev. 2014, 114, 10575–10612. [Google Scholar] [CrossRef]
- Liu, B.; Vikrant, K.; Kim, K.-H.; Kumar, V.; Kailasa, S.K. Critical Role of Water Stability in Metal-Organic Frameworks and Advanced Modification Strategies for the Extension of Their Applicability. Environ. Sci. Nano 2020, 7, 1319–1347. [Google Scholar] [CrossRef]
- Mouchaham, G.; Wang, S.; Serre, C. The Stability of Metal-Organic Frameworks. In Metal-Organic Frameworks; García, H., Navalón, S., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2018; pp. 1–28. [Google Scholar] [CrossRef]
- Emam, H.E.; Darwesh, O.M.; Abdelhameed, R.M. In-Growth Metal Organic Framework/Synthetic Hybrids as Antimicrobial Fabrics and Its Toxicity. Colloids Surf. B Biointerfaces 2018, 165, 219–228. [Google Scholar] [CrossRef]
- Ettlinger, R.; Lächelt, U.; Gref, R.; Horcajada, P.; Lammers, T.; Serre, C.; Couvreur, P.; Morris, R.E.; Wuttke, S. Toxicity of Metal-Organic Framework Nanoparticles: From Essential Analyses to Potential Applications. Chem. Soc. Rev. 2022, 51, 464–484. [Google Scholar] [CrossRef]
- Gropp, C.; Canossa, S.; Wuttke, S.; Gándara, F.; Li, Q.; Gagliardi, L.; Yaghi, O.M. Standard Practices of Reticular Chemistry. ACS Cent. Sci. 2020, 6, 1255–1273. [Google Scholar] [CrossRef]
- Pattengale, B.; Neu, J.; Ostresh, S.; Hu, G.; Spies, J.A.; Okabe, R.; Brudvig, G.W.; Schmuttenmaer, C.A. Metal-Organic Framework Photoconductivity via Time-Resolved Terahertz Spectroscopy. J. Am. Chem. Soc. 2019, 141, 9793–9797. [Google Scholar] [CrossRef]
- Liu, X.; Kozlowska, M.; Okkali, T.; Wagner, D.; Higashino, T.; Brenner-Weiß, G.; Marschner, S.M.; Fu, Z.; Zhang, Q.; Imahori, H.; et al. Photoconductivity in Metal-Organic Framework (MOF) Thin Films. Angew. Chem. Int. Ed. 2019, 58, 9590–9595. [Google Scholar] [CrossRef]
- Hendon, C.H.; Tiana, D.; Walsh, A. Conductive Metal-Organic Frameworks and Networks: Fact or Fantasy? Phys. Chem. Chem. Phys. 2012, 14, 13120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musho, T.; Li, J.; Wu, N. Band Gap Modulation of Functionalized Metal-Organic Frameworks. Phys. Chem. Chem. Phys. 2014, 16, 23646–23653. [Google Scholar] [CrossRef] [PubMed]
- Fabrizio, K.; Le, K.N.; Andreeva, A.B.; Hendon, C.H.; Brozek, C.K. Determining Optical Band Gaps of MOFs. ACS Mater. Lett. 2022, 4, 457–463. [Google Scholar] [CrossRef]
- Chen, S.; Pan, X.; Xu, C.; Huang, J.; Ye, Z. X-Ray Photoelectron Spectroscopy Study of Energy-Band Alignments of ZnO on Buffer Layer Lu2O3. Phys. Lett. A 2016, 380, 970–972. [Google Scholar] [CrossRef]
- Kraut, E.A.; Grant, R.W.; Waldrop, J.R.; Kowalczyk, S.P. Precise Determination of the Valence-Band Edge in X-Ray Photoemission Spectra: Application to Measurement of Semiconductor Interface Potentials. Phys. Rev. Lett. 1980, 44, 1620–1623. [Google Scholar] [CrossRef]
- Carlson, B.; Leschkies, K.; Aydil, E.S.; Zhu, X.-Y. Valence Band Alignment at Cadmium Selenide Quantum Dot and Zinc Oxide (10) Interfaces. J. Phys. Chem. C 2008, 112, 8419–8423. [Google Scholar] [CrossRef]
- Liang, Q.; Cui, S.; Liu, C.; Xu, S.; Yao, C.; Li, Z. Construction of CdS@UIO-66-NH2 Core-Shell Nanorods for Enhanced Photocatalytic Activity with Excellent Photostability. J. Colloid Interface Sci. 2018, 524, 379–387. [Google Scholar] [CrossRef]
- Shen, L.; Liang, S.; Wu, W.; Liang, R.; Wu, L. Multifunctional NH2-Mediated Zirconium Metal-Organic Framework as an Efficient Visible-Light-Driven Photocatalyst for Selective Oxidation of Alcohols and Reduction of Aqueous Cr(VI). Dalton Trans. 2013, 42, 13649. [Google Scholar] [CrossRef]
- Li, X.; Wang, J.; Xue, F.; Wu, Y.; Xu, H.; Yi, T.; Li, Q. An Imine-Linked Metal-Organic Framework as a Reactive Oxygen Species Generator. Angew. Chem. Int. Ed. 2021, 60, 2534–2540. [Google Scholar] [CrossRef]
- Hao, Y.; Liu, B.M.; Bennett, T.F.; Monsour, C.G.; Selke, M.; Liu, Y. Determination of Singlet Oxygen Quantum Yield of a Porphyrinic Metal-Organic Framework. J. Phys. Chem. C 2021, 125, 7392–7400. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, S.; Liu, H.; Chen, H.; Zhou, J.; Chen, Z.; Zhou, X.; Xie, Z.; Kuang, Q.; Zheng, L. Biomimetic Metal-Organic Framework Composite-Mediated Cascade Catalysis for Synergistic Bacteria Killing. ACS Appl. Mater. Interfaces 2020, 12, 36996–37005. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Pan, X.; Yang, H.; Wang, H.; Wu, Q.; Zheng, L.; Xu, B.; Wang, J.; Shi, X.; Bai, F.; et al. Bioactive Metal-Organic Frameworks with Specific Metal–Nitrogen (M–N) Active Sites for Efficient Sonodynamic Tumor Therapy. ACS Nano 2021, 15, 20003–20012. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.-H.; Liu, Y.; Song, C.; Hu, Y.; Feng, G.; Tang, B.Z. Porphyrin-Based Two-Dimensional Layered Metal-Organic Framework with Sono-/Photocatalytic Activity for Water Decontamination. ACS Nano 2022, 16, 1346–1357. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Zhao, Y.; Sun, Y.; Cao, J. Recent Progress of Metal-Organic Framework-Based Photodynamic Therapy for Cancer Treatment. IJN 2022, 17, 2367–2395. [Google Scholar] [CrossRef]
- Alves, S.R.; Calori, I.R.; Tedesco, A.C. Photosensitizer-Based Metal-Organic Frameworks for Highly Effective Photodynamic Therapy. Mater. Sci. Eng. C 2021, 131, 112514. [Google Scholar] [CrossRef]
- Li, M.; You, S.; Duan, X.; Liu, Y. Selective Formation of Reactive Oxygen Species in Peroxymonosulfate Activation by Metal-Organic Framework-Derived Membranes: A Defect Engineering-Dependent Study. Appl. Catal. B Environ. 2022, 312, 121419. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption Kinetic Models: Physical Meanings, Applications, and Solving Methods. J. Hazard. Mater. 2020, 390, 122156. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption Isotherm Models: Classification, Physical Meaning, Application and Solving Method. Chemosphere 2020, 258, 127279. [Google Scholar] [CrossRef]
- Custelcean, R.; Moyer, B.A. Anion Separation with Metal-Organic Frameworks. Eur. J. Inorg. Chem. 2007, 2007, 1321–1340. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Zhao, G.; Chen, C.; Chai, Z.; Alsaedi, A.; Hayat, T.; Wang, X. Metal-Organic Framework-Based Materials: Superior Adsorbents for the Capture of Toxic and Radioactive Metal Ions. Chem. Soc. Rev. 2018, 47, 2322–2356. [Google Scholar] [CrossRef]
- Howarth, A.J.; Liu, Y.; Hupp, J.T.; Farha, O.K. Metal-Organic Frameworks for Applications in Remediation of Oxyanion/Cation-Contaminated Water. CrystEngComm 2015, 17, 7245–7253. [Google Scholar] [CrossRef]
- Kumar, P.; Pournara, A.; Kim, K.-H.; Bansal, V.; Rapti, S.; Manos, M.J. Metal-Organic Frameworks: Challenges and Opportunities for Ion-Exchange/Sorption Applications. Prog. Mater. Sci. 2017, 86, 25–74. [Google Scholar] [CrossRef]
- Mon, M.; Bruno, R.; Ferrando-Soria, J.; Armentano, D.; Pardo, E. Metal-Organic Framework Technologies for Water Remediation: Towards a Sustainable Ecosystem. J. Mater. Chem. A 2018, 6, 4912–4947. [Google Scholar] [CrossRef]
- Kisch, H.; Bahnemann, D. Best Practice in Photocatalysis: Comparing Rates or Apparent Quantum Yields? J. Phys. Chem. Lett. 2015, 6, 1907–1910. [Google Scholar] [CrossRef]
- Hoque, M.; Guzman, M. Photocatalytic Activity: Experimental Features to Report in Heterogeneous Photocatalysis. Materials 2018, 11, 1990. [Google Scholar] [CrossRef]
- Salinaro, A.; Emeline, A.V.; Zhao, J.; Hidaka, H.; Ryabchuk, V.K.; Serpone, N. Terminology, Relative Photonic Efficiencies and Quantum Yields in Heterogeneous Photocatalysis. Part II: Experimental Determination of Quantum Yields. Pure Appl. Chem. 1999, 71, 321–335. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, J.; Li, Y.; Zhuang, Q.; Gu, J. Simultaneous Degradation and Removal of CrVI from Aqueous Solution with Zr-Based Metal-Organic Frameworks Bearing Inherent Reductive Sites. Chem. -A Eur. J. 2017, 23, 15415–15423. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Wang, X.; Zhou, Y.; Jiang, L.; Wang, C. Selective Adsorption of Arsenate and the Reversible Structure Transformation of the Mesoporous Metal-Organic Framework MIL-100(Fe). Phys. Chem. Chem. Phys. 2016, 18, 10864–10867. [Google Scholar] [CrossRef]
- Węgrzyniak, A.; Rokicińska, A.; Hędrzak, E.; Michorczyk, B.; Zeńczak-Tomera, K.; Kuśtrowski, P.; Michorczyk, P. High-Performance Cr–Zr–O and Cr–Zr–K–O Catalysts Prepared by Nanocasting for Dehydrogenation of Propane to Propene. Catal. Sci. Technol. 2017, 7, 6059–6068. [Google Scholar] [CrossRef]
- Weckhuysen, B.M.; Schoonheydt, R.A.; Mabbs, F.E.; Collison, D. Electron Paramagnetic Resonance of Heterogeneous Chromium Catalysts. Faraday Trans. 1996, 92, 2431. [Google Scholar] [CrossRef] [Green Version]
- Dhanpat, R.; Sass, B.M.; Moore, D.A. Chromium(III) Hydrolysis Constants and Solubility of Chromium(III) Hydroxide. Inorg. Chem. 1987, 26, 345–349. [Google Scholar] [CrossRef]
- Weckhuysen, B.M.; Ramachandra Rao, R.; Pelgrims, J.; Schoonheydt, R.A.; Bodart, P.; Debras, G.; Collart, O.; Van Der Voort, P.; Vansant, E.F. Synthesis, Spectroscopy and Catalysis of [Cr(Acac)3] Complexes Grafted onto MCM-41 Materials: Formation of Polyethylene Nanofibres within Mesoporous Crystalline Aluminosilicates. Chem. Eur. J. 2000, 6, 2960–2970. [Google Scholar] [CrossRef] [PubMed]
- Howarth, A.J.; Katz, M.J.; Wang, T.C.; Platero-Prats, A.E.; Chapman, K.W.; Hupp, J.T.; Farha, O.K. High Efficiency Adsorption and Removal of Selenate and Selenite from Water Using Metal-Organic Frameworks. J. Am. Chem. Soc. 2015, 137, 7488–7494. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, H.; Chen, N.; Chang, G.; Zhao, X.; Sun, Y.; Chen, S.; Zhang, H.; Yang, D. Selective Capture of Toxic Selenite Anions by Bismuth-Based Metal-Organic Frameworks. Angew. Chem. Int. Ed. 2018, 57, 13197–13201. [Google Scholar] [CrossRef]
- Li, Z.; Schweitzer, N.M.; League, A.B.; Bernales, V.; Peters, A.W.; Getsoian, A.; Wang, T.C.; Miller, J.T.; Vjunov, A.; Fulton, J.L.; et al. Sintering-Resistant Single-Site Nickel Catalyst Supported by Metal-Organic Framework. J. Am. Chem. Soc. 2016, 138, 1977–1982. [Google Scholar] [CrossRef]
- Yuan, R.; Yue, C.; Qiu, J.; Liu, F.; Li, A. Highly Efficient Sunlight-Driven Reduction of Cr(VI) by TiO2@NH2-MIL-88B(Fe) Heterostructures under Neutral Conditions. Appl. Catal. B Environ. 2019, 251, 229–239. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J.; Leong, S.; Lin, X.; Wei, J.; Kong, B.; Xu, Y.; Low, Z.-X.; Yao, J.; Wang, H. Rapid Construction of ZnO@ZIF-8 Heterostructures with Size-Selective Photocatalysis Properties. ACS Appl. Mater. Interfaces 2016, 8, 9080–9087. [Google Scholar] [CrossRef]
- Qiu, J.; Zhang, X.-F.; Zhang, X.; Feng, Y.; Li, Y.; Yang, L.; Lu, H.; Yao, J. Constructing Cd0.5Zn0.5S@ZIF-8 Nanocomposites through Self-Assembly Strategy to Enhance Cr(VI) Photocatalytic Reduction. J. Hazard. Mater. 2018, 349, 234–241. [Google Scholar] [CrossRef]
- Zhang, Y.; Park, S.-J. Facile Construction of MoO3@ZIF-8 Core-Shell Nanorods for Efficient Photoreduction of Aqueous Cr(VI). Appl. Catal. B Environ. 2019, 240, 92–101. [Google Scholar] [CrossRef]
- Wang, F.-X.; Yi, X.-H.; Wang, C.-C.; Deng, J.-G. Photocatalytic Cr(VI) Reduction and Organic-Pollutant Degradation in a STable 2D Coordination Polymer. Chin. J. Catal. 2017, 38, 2141–2149. [Google Scholar] [CrossRef]
- Wang, X.; Liu, W.; Fu, H.; Yi, X.-H.; Wang, P.; Zhao, C.; Wang, C.-C.; Zheng, W. Simultaneous Cr(VI) Reduction and Cr(III) Removal of Bifunctional MOF/Titanate Nanotube Composites. Environ. Pollut. 2019, 249, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.-H.; Wang, F.-X.; Du, X.-D.; Wang, P.; Wang, C.-C. Facile Fabrication of BUC-21/g-C3N4 Composites and Their Enhanced Photocatalytic Cr(VI) Reduction Performances under Simulated Sunlight. Appl. Organomet. Chem. 2019, 33, e4621. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Wang, Z.; Li, X.; Yi, X.; Chu, H.; Chen, X.; Wang, C.-C. Facile Fabrication of BUC-21/Bi24O31Br10 Composites for Enhanced Photocatalytic Cr(VI) Reduction under White Light. Chem. Eng. J. 2020, 389, 123431. [Google Scholar] [CrossRef]
- Zhao, H.; Xia, Q.; Xing, H.; Chen, D.; Wang, H. Construction of Pillared-Layer MOF as Efficient Visible-Light Photocatalysts for Aqueous Cr(VI) Reduction and Dye Degradation. ACS Sustain. Chem. Eng. 2017, 5, 4449–4456. [Google Scholar] [CrossRef]
- Yi, X.-H.; Wang, F.-X.; Du, X.-D.; Fu, H.; Wang, C.-C. Highly Efficient Photocatalytic Cr(VI) Reduction and Organic Pollutants Degradation of Two New Bifunctional 2D Cd/Co-Based MOFs. Polyhedron 2018, 152, 216–224. [Google Scholar] [CrossRef]
- Dai, D.; Qiu, J.; Zhang, L.; Ma, H.; Yao, J. Amino-Functionalized Ti-Metal-Organic Framework Decorated BiOI Sphere for Simultaneous Elimination of Cr(VI) and Tetracycline. J. Colloid Interface Sci. 2022, 607, 933–941. [Google Scholar] [CrossRef]
- Kaur, H.; Sinha, S.; Krishnan, V.; Koner, R.R. Photocatalytic Reduction and Recognition of Cr(VI): New Zn(II)-Based Metal-Organic Framework as Catalytic Surface. Ind. Eng. Chem. Res. 2020, 59, 8538–8550. [Google Scholar] [CrossRef]
- Horiuchi, Y.; Toyao, T.; Saito, M.; Mochizuki, K.; Iwata, M.; Higashimura, H.; Anpo, M.; Matsuoka, M. Visible-Light-Promoted Photocatalytic Hydrogen Production by Using an Amino-Functionalized Ti(IV) Metal-Organic Framework. J. Phys. Chem. C 2012, 116, 20848–20853. [Google Scholar] [CrossRef]
- Yadav, M.; Xu, Q. Catalytic Chromium Reduction Using Formic Acid and Metal Nanoparticles Immobilized in a Metal-Organic Framework. Chem. Commun. 2013, 49, 3327. [Google Scholar] [CrossRef]
- Li, W.-Q.; Wang, Y.-X.; Li, Y.-M.; He, C.-S.; Lai, B.; Chen, F.; Wang, H.-J.; Zhou, X.-G.; Mu, Y. Metal Organic Framework Decorated with Molybdenum Disulfide for Visible-Light-Driven Reduction of Hexavalent Chromium: Performance and Mechanism. J. Clean. Prod. 2021, 318, 128513. [Google Scholar] [CrossRef]
- He, Z.; Liang, R.; Zhou, C.; Yan, G.; Wu, L. Carbon Quantum Dots (CQDs)/Noble Metal Co-Decorated MIL-53(Fe) as Difunctional Photocatalysts for the Simultaneous Removal of Cr(VI) and Dyes. Sep. Purif. Technol. 2021, 255, 117725. [Google Scholar] [CrossRef]
- Wang, S.; Meng, F.; Sun, X.; Bao, M.; Ren, J.; Yu, S.; Zhang, Z.; Ke, J.; Zeng, L. Bimetallic Fe/In Metal-Organic Frameworks Boosting Charge Transfer for Enhancing Pollutant Degradation in Wastewater. Appl. Surf. Sci. 2020, 528, 147053. [Google Scholar] [CrossRef]
- Huang, L.; Sun, D.-W.; Pu, H. Photosensitized Peroxidase Mimicry at the Hierarchical 0D/2D Heterojunction-Like Quasi Metal-Organic Framework Interface for Boosting Biocatalytic Disinfection. Small 2022, 18, 2200178. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Jiang, X.; Liu, Y.; Liu, D.; Chen, C.; Lu, C.; Zhuang, S.; Kumar, A.; Liu, J. Recent Advances in Cu(II)/Cu(I)-MOFs Based Nano-Platforms for Developing New Nano-Medicines. J. Inorg. Biochem. 2021, 225, 111599. [Google Scholar] [CrossRef] [PubMed]
- Birhanlı, E.; Noma, S.A.A.; Boran, F.; Ulu, A.; Yeşilada, Ö.; Ateş, B. Design of Laccase—Metal-Organic Framework Hybrid Constructs for Biocatalytic Removal of Textile Dyes. Chemosphere 2022, 292, 133382. [Google Scholar] [CrossRef]
- Zhang, Y.; Park, S.-J. Stabilization of Dispersed CuPd Bimetallic Alloy Nanoparticles on ZIF-8 for Photoreduction of Cr(VI) in Aqueous Solution. Chem. Eng. J. 2019, 369, 353–362. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, X.; Wu, Y.; Zeng, G.; Chen, X.; Leng, L.; Wu, Z.; Jiang, L.; Li, H. Facile Synthesis of Amino-Functionalized Titanium Metal-Organic Frameworks and Their Superior Visible-Light Photocatalytic Activity for Cr(VI) Reduction. J. Hazard. Mater. 2015, 286, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Liang, R.; Jing, F.; Shen, L.; Qin, N.; Wu, L. MIL-53(Fe) as a Highly Efficient Bifunctional Photocatalyst for the Simultaneous Reduction of Cr(VI) and Oxidation of Dyes. J. Hazard. Mater. 2015, 287, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Wang, T.; Zhang, H.; Chang, K.; Meng, X.; Liu, H.; Ye, J. An Amine-Functionalized Iron(III) Metal-Organic Framework as Efficient Visible-Light Photocatalyst for Cr(VI) Reduction. Adv. Sci. 2015, 2, 1500006. [Google Scholar] [CrossRef] [PubMed]
- Liang, R.; Chen, R.; Jing, F.; Qin, N.; Wu, L. Multifunctional Polyoxometalates Encapsulated in MIL-100(Fe): Highly Efficient Photocatalysts for Selective Transformation under Visible Light. Dalton Trans. 2015, 44, 18227–18236. [Google Scholar] [CrossRef]
- Liang, R.; Shen, L.; Jing, F.; Qin, N.; Wu, L. Preparation of MIL-53(Fe)-Reduced Graphene Oxide Nanocomposites by a Simple Self-Assembly Strategy for Increasing Interfacial Contact: Efficient Visible-Light Photocatalysts. ACS Appl. Mater. Interfaces 2015, 7, 9507–9515. [Google Scholar] [CrossRef] [PubMed]
- Liang, R.; Jing, F.; Shen, L.; Qin, N.; Wu, L. M@MIL-100(Fe) (M = Au, Pd, Pt) Nanocomposites Fabricated by a Facile Photodeposition Process: Efficient Visible-Light Photocatalysts for Redox Reactions in Water. Nano Res. 2015, 8, 3237–3249. [Google Scholar] [CrossRef]
- Liang, R.; He, Z.; Lu, Y.; Yan, G.; Wu, L. High-Efficiency Sandwich-like Hierarchical AgBr-Ag@MIL-68(Fe) Photocatalysts: Step-Scheme Photocatalytic Mechanism for Enhanced Photoactivity. Sep. Purif. Technol. 2021, 277, 119442. [Google Scholar] [CrossRef]
- Bao, M.; Liu, Y.; Sun, X.; Ren, J.; Zhang, Z.; Ke, J.; Zeng, L. Plasmonic Ag/AgCl/NH2-MIL-88B (Fe) Inorganic-Organic Hybridized Heterojunction as Visible-Light-Driven Photocatalyst for Hexavalent Chromium Reduction. J. Alloys Compd. 2021, 862, 158195. [Google Scholar] [CrossRef]
- Huang, W.; Liu, N.; Zhang, X.; Wu, M.; Tang, L. Metal Organic Framework G-C 3 N 4/MIL-53(Fe) Heterojunctions with Enhanced Photocatalytic Activity for Cr(VI) Reduction under Visible Light. Appl. Surf. Sci. 2017, 425, 107–116. [Google Scholar] [CrossRef]
- Chen, F.; Wang, H.; Hu, H.; Gan, J.; Su, M.; Xu, H.; Wei, C. Construction of NH2-MIL-101(Fe)/g-C3N4 Hybrids Based on Interfacial Lewis Acid-Base Interaction and Its Enhanced Photocatalytic Redox Capability. Colloids Surf. A Physicochem. Eng. Asp. 2021, 631, 127710. [Google Scholar] [CrossRef]
- Pattappan, D.; Kavya, K.V.; Vargheese, S.; Kumar, R.T.R.; Haldorai, Y. Graphitic Carbon Nitride/NH2-MIL-101(Fe) Composite for Environmental Remediation: Visible-Light-Assisted Photocatalytic Degradation of Acetaminophen and Reduction of Hexavalent Chromium. Chemosphere 2022, 286, 131875. [Google Scholar] [CrossRef]
- Jing, F.; Liang, R.; Xiong, J.; Chen, R.; Zhang, S.; Li, Y.; Wu, L. MIL-68(Fe) as an Efficient Visible-Light-Driven Photocatalyst for the Treatment of a Simulated Waste-Water Contain Cr(VI) and Malachite Green. Appl. Catal. B Environ. 2017, 206, 9–15. [Google Scholar] [CrossRef]
- Oladipo, A.A. MIL-53 (Fe)-Based Photo-Sensitive Composite for Degradation of Organochlorinated Herbicide and Enhanced Reduction of Cr(VI). Process Saf. Environ. Prot. 2018, 116, 413–423. [Google Scholar] [CrossRef]
- Wang, J.-W.; Qiu, F.-G.; Wang, P.; Ge, C.; Wang, C.-C. Boosted Bisphenol A and Cr(VI) Cleanup over Z-Scheme WO3/MIL-100(Fe) Composites under Visible Light. J. Clean. Prod. 2021, 279, 123408. [Google Scholar] [CrossRef]
- Li, H.; Zhao, C.; Li, X.; Fu, H.; Wang, Z.; Wang, C.-C. Boosted Photocatalytic Cr(VI) Reduction over Z-Scheme MIL-53(Fe)/Bi12O17Cl2 Composites under White Light. J. Alloy. Compd. 2020, 844, 156147. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, J.; Chen, X.; Wang, Z.; Ji, H.; Chen, L.; Liu, W.; Wang, C.-C. Bifunctional Bi12O17Cl2/MIL-100(Fe) Composites toward Photocatalytic Cr(VI) Sequestration and Activation of Persulfate for Bisphenol A Degradation. Sci. Total Environ. 2021, 752, 141901. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.-D.; Yi, X.-H.; Zhao, C.; Fu, H.; Wang, P.; Wang, C.-C. Polyaniline Modified MIL-100(Fe) for Enhanced Photocatalytic Cr(VI) Reduction and Tetracycline Degradation under White Light. Chemosphere 2020, 245, 125659. [Google Scholar] [CrossRef]
- Sadeghian, S.; Pourfakhar, H.; Baghdadi, M.; Aminzadeh, B. Application of Sand Particles Modified with NH2-MIL-101(Fe) as an Efficient Visible-Light Photocatalyst for Cr(VI) Reduction. Chemosphere 2021, 268, 129365. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Yi, X.-H.; Wang, C.-C.; Wang, P.; Zheng, W. Photocatalytic Cr(VI) Reduction over MIL-101(Fe)–NH2 Immobilized on Alumina Substrate: From Batch Test to Continuous Operation. Chem. Eng. J. 2022, 429, 132497. [Google Scholar] [CrossRef]
- Garazhian, Z.; Farrokhi, A.; Rezaeifard, A.; Jafarpour, M.; Khani, R. The Enhanced Visible-Light-Induced Photocatalytic Activities of Bimetallic Mn–Fe MOFs for the Highly Efficient Reductive Removal of Cr(VI). RSC Adv. 2021, 11, 21127–21136. [Google Scholar] [CrossRef] [PubMed]
- Dhivya, E.; Magadevan, D.; Palguna, Y.; Mishra, T.; Aman, N. Synthesis of Titanium Based Hetero MOF Photocatalyst for Reduction of Cr(VI) from Wastewater. J. Environ. Chem. Eng. 2019, 7, 103240. [Google Scholar] [CrossRef]
- Li, Y.-X.; Wang, C.-C.; Fu, H.; Wang, P. Marigold-Flower-like TiO2/MIL-125 Core−shell Composite for Enhanced Photocatalytic Cr(VI) Reduction. J. Environ. Chem. Eng. 2021, 9, 105451. [Google Scholar] [CrossRef]
- Liang, R.; Shen, L.; Jing, F.; Wu, W.; Qin, N.; Lin, R.; Wu, L. NH2-Mediated Indium Metal-Organic Framework as a Novel Visible-Light-Driven Photocatalyst for Reduction of the Aqueous Cr(VI). Appl. Catal. B Environ. 2015, 162, 245–251. [Google Scholar] [CrossRef]
- Guerrini, L.; Graham, D. Molecularly-Mediated Assemblies of Plasmonic Nanoparticles for Surface-Enhanced Raman Spectroscopy Applications. Chem. Soc. Rev. 2012, 41, 7085. [Google Scholar] [CrossRef]
- Laurier, K.G.M.; Vermoortele, F.; Ameloot, R.; De Vos, D.E.; Hofkens, J.; Roeffaers, M.B.J. Iron(III)-Based Metal-Organic Frameworks As Visible Light Photocatalysts. J. Am. Chem. Soc. 2013, 135, 14488–14491. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-Q.; Wang, Y.-X.; Chen, J.-Q.; Hou, N.-N.; Li, Y.-M.; Liu, X.-C.; Ding, R.-R.; Zhou, G.-N.; Li, Q.; Zhou, X.-G.; et al. Boosting Photo-Fenton Process Enabled by Ligand-to-Cluster Charge Transfer Excitations in Iron-Based Metal Organic Framework. Appl. Catal. B Environ. 2022, 302, 120882. [Google Scholar] [CrossRef]
- Ye, G.; Hu, L.; Gu, Y.; Lancelot, C.; Rives, A.; Lamonier, C.; Nuns, N.; Marinova, M.; Xu, W.; Sun, Y. Synthesis of Polyoxometalate Encapsulated in UiO-66(Zr) with Hierarchical Porosity and Double Active Sites for Oxidation Desulfurization of Fuel Oil at Room Temperature. J. Mater. Chem. A 2020, 8, 19396–19404. [Google Scholar] [CrossRef]
- Bai, Y.; Dou, Y.; Xie, L.-H.; Rutledge, W.; Li, J.-R.; Zhou, H.-C. Zr-Based Metal-Organic Frameworks: Design, Synthesis, Structure, and Applications. Chem. Soc. Rev. 2016, 45, 2327–2367. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Day, G.S.; Wang, K.-Y.; Yuan, S.; Zhou, H.-C. Strategies for Pore Engineering in Zirconium Metal-Organic Frameworks. Chem 2020, 6, 2902–2923. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Mian, M.R.; Son, F.A.; Zhang, K.; Cao, R.; Chen, Z.; Lee, S.-J.; Idrees, K.B.; Goetjen, T.A.; et al. Structural Diversity of Zirconium Metal-Organic Frameworks and Effect on Adsorption of Toxic Chemicals. J. Am. Chem. Soc. 2020, 142, 21428–21438. [Google Scholar] [CrossRef]
- Wang, S.; Cabrero-Antonino, M.; Navalón, S.; Cao, C.; Tissot, A.; Dovgaliuk, I.; Marrot, J.; Martineau-Corcos, C.; Yu, L.; Wang, H.; et al. A Robust Titanium Isophthalate Metal-Organic Framework for Visible-Light Photocatalytic CO2 Methanation. Chem 2020, 6, 3409–3427. [Google Scholar] [CrossRef]
- Wang, S.; Reinsch, H.; Heymans, N.; Wahiduzzaman, M.; Martineau-Corcos, C.; De Weireld, G.; Maurin, G.; Serre, C. Toward a Rational Design of Titanium Metal-Organic Frameworks. Matter 2020, 2, 440–450. [Google Scholar] [CrossRef] [Green Version]
- Assi, H.; Mouchaham, G.; Steunou, N.; Devic, T.; Serre, C. Titanium Coordination Compounds: From Discrete Metal Complexes to Metal-Organic Frameworks. Chem. Soc. Rev. 2017, 46, 3431–3452. [Google Scholar] [CrossRef]
- Shen, L.; Liang, R.; Luo, M.; Jing, F.; Wu, L. Electronic Effects of Ligand Substitution on Metal-Organic Framework Photocatalysts: The Case Study of UiO-66. Phys. Chem. Chem. Phys. 2015, 17, 117–121. [Google Scholar] [CrossRef]
- Shen, L.; Huang, L.; Liang, S.; Liang, R.; Qin, N.; Wu, L. Electrostatically Derived Self-Assembly of NH2-Mediated Zirconium MOFs with Graphene for Photocatalytic Reduction of Cr(VI). RSC Adv. 2014, 4, 2546–2549. [Google Scholar] [CrossRef]
- Yi, X.-H.; Ma, S.-Q.; Du, X.-D.; Zhao, C.; Fu, H.; Wang, P.; Wang, C.-C. The Facile Fabrication of 2D/3D Z-Scheme g-C3N4/UiO-66 Heterojunction with Enhanced Photocatalytic Cr(VI) Reduction Performance under White Light. Chem. Eng. J. 2019, 375, 121944. [Google Scholar] [CrossRef]
- Li, Y.-H.; Yi, X.-H.; Li, Y.-X.; Wang, C.-C.; Wang, P.; Zhao, C.; Zheng, W. Robust Cr(VI) Reduction over Hydroxyl Modified UiO-66 Photocatalyst Constructed from Mixed Ligands: Performances and Mechanism Insight with or without Tartaric Acid. Environ. Res. 2021, 201, 111596. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Wang, C.-C.; Li, Y.; Wang, P.; Wei, Q. The Z-Scheme NH2-UiO-66/PTCDA Composite for Enhanced Photocatalytic Cr(VI) Reduction under Low-Power LED Visible Light. Chemosphere 2021, 280, 130734. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhao, J.; Chen, J.; Zhang, Y.; Chen, D.; Wang, Q.; Xia, D. UiO-66/BiOBr Heterojunction Functionalized Cotton Fabrics as Flexible Photocatalyst for Visible-Light Driven Degradation of Dyes and Cr(VI). Sep. Purif. Technol. 2021, 258, 118007. [Google Scholar] [CrossRef]
- Du, X.-D.; Yi, X.-H.; Wang, P.; Zheng, W.; Deng, J.; Wang, C.-C. Robust Photocatalytic Reduction of Cr(VI) on UiO-66-NH2(Zr/Hf) Metal-Organic Framework Membrane under Sunlight Irradiation. Chem. Eng. J. 2019, 356, 393–399. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, Q.; Cao, M.; Ling, N.; Yao, J. Defect-Tailoring and Titanium Substitution in Metal-Organic Framework UiO-66-NH 2 for the Photocatalytic Degradation of Cr(VI) to Cr(III). ACS Appl. Nano Mater. 2019, 2, 5973–5980. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, X.; Wu, Y.; Chen, X.; Leng, L.; Zeng, G. Photodeposition of Metal Sulfides on Titanium Metal-Organic Frameworks for Excellent Visible-Light-Driven Photocatalytic Cr(VI) Reduction. RSC Adv. 2015, 5, 32531–32535. [Google Scholar] [CrossRef]
- Luo, T.-Y.; Liu, C.; Gan, X.Y.; Muldoon, P.F.; Diemler, N.A.; Millstone, J.E.; Rosi, N.L. Multivariate Stratified Metal-Organic Frameworks: Diversification Using Domain Building Blocks. J. Am. Chem. Soc. 2019, 141, 2161–2168. [Google Scholar] [CrossRef]
- Dong, Z.; Sun, Y.; Chu, J.; Zhang, X.; Deng, H. Multivariate Metal-Organic Frameworks for Dialing-in the Binding and Programming the Release of Drug Molecules. J. Am. Chem. Soc. 2017, 139, 14209–14216. [Google Scholar] [CrossRef]
- Osborn Popp, T.M.; Yaghi, O.M. Sequence-Dependent Materials. Acc. Chem. Res. 2017, 50, 532–534. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Doonan, C.J.; Furukawa, H.; Ferreira, R.B.; Towne, J.; Knobler, C.B.; Wang, B.; Yaghi, O.M. Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks. Science 2010, 327, 846–850. [Google Scholar] [CrossRef]
- Wang, X.-S.; Chen, C.-H.; Ichihara, F.; Oshikiri, M.; Liang, J.; Li, L.; Li, Y.; Song, H.; Wang, S.; Zhang, T.; et al. Integration of Adsorption and Photosensitivity Capabilities into a Cationic Multivariate Metal-Organic Framework for Enhanced Visible-Light Photoreduction Reaction. Appl. Catal. B Environ. 2019, 253, 323–330. [Google Scholar] [CrossRef]
- Masoomi, M.Y.; Morsali, A.; Dhakshinamoorthy, A.; Garcia, H. Mixed-Metal MOFs: Unique Opportunities in Metal-Organic Framework (MOF) Functionality and Design. Angew. Chem. 2019, 131, 15330–15347. [Google Scholar] [CrossRef]
- Lalonde, M.; Bury, W.; Karagiaridi, O.; Brown, Z.; Hupp, J.T.; Farha, O.K. Transmetalation: Routes to Metal Exchange within Metal-Organic Frameworks. J. Mater. Chem. A 2013, 1, 5453. [Google Scholar] [CrossRef]
- Granadeiro, C.M.; Ribeiro, S.O.; Karmaoui, M.; Valença, R.; Ribeiro, J.C.; de Castro, B.; Cunha-Silva, L.; Balula, S.S. Production of Ultra-Deep Sulfur-Free Diesels Using a Sustainable Catalytic System Based on UiO-66(Zr). Chem. Commun. 2015, 51, 13818–13821. [Google Scholar] [CrossRef]
- Sun, D.; Liu, W.; Qiu, M.; Zhang, Y.; Li, Z. Introduction of a Mediator for Enhancing Photocatalytic Performance via Post-Synthetic Metal Exchange in Metal-Organic Frameworks (MOFs). Chem. Commun. 2015, 51, 2056–2059. [Google Scholar] [CrossRef]
- Navarro Amador, R.; Carboni, M.; Meyer, D. Sorption and Photodegradation under Visible Light Irradiation of an Organic Pollutant by a Heterogeneous UiO-67–Ru–Ti MOF Obtained by Post-Synthetic Exchange. RSC Adv. 2017, 7, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Faustini, M. Patterning MOFs at Smaller Scales. Nat. Mater. 2021, 20, 8–9. [Google Scholar] [CrossRef]
- Dhakshinamoorthy, A.; Li, Z.; Garcia, H. Catalysis and Photocatalysis by Metal Organic Frameworks. Chem. Soc. Rev. 2018, 47, 8134–8172. [Google Scholar] [CrossRef]
- Zango, Z.U.; Jumbri, K.; Sambudi, N.S.; Ramli, A.; Abu Bakar, N.H.H.; Saad, B.; Rozaini, M.N.H.; Isiyaka, H.A.; Jagaba, A.H.; Aldaghri, O.; et al. A Critical Review on Metal-Organic Frameworks and Their Composites as Advanced Materials for Adsorption and Photocatalytic Degradation of Emerging Organic Pollutants from Wastewater. Polymers 2020, 12, 2648. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Sun, Q.; Lin, L.; Wang, J.; Zhang, C.; Xia, C.; Bao, T.; Wan, J.; Huang, R.; Zou, J.; et al. Ternary MOF-on-MOF Heterostructures with Controllable Architectural and Compositional Complexity via Multiple Selective Assembly. Nat. Commun. 2020, 11, 4971. [Google Scholar] [CrossRef] [PubMed]
- Samaniyan, M.; Mirzaei, M.; Khajavian, R.; Eshtiagh-Hosseini, H.; Streb, C. Heterogeneous Catalysis by Polyoxometalates in Metal-Organic Frameworks. ACS Catal. 2019, 9, 10174–10191. [Google Scholar] [CrossRef]
- Yang, Q.; Xu, Q.; Jiang, H.-L. Metal-Organic Frameworks Meet Metal Nanoparticles: Synergistic Effect for Enhanced Catalysis. Chem. Soc. Rev. 2017, 46, 4774–4808. [Google Scholar] [CrossRef]
- Qian, Y.; Zhang, F.; Pang, H. A Review of MOFs and Their Composites-Based Photocatalysts: Synthesis and Applications. Adv. Funct. Mater. 2021, 31, 2104231. [Google Scholar] [CrossRef]
- Dunne, P.W.; Lester, E.; Walton, R.I. Towards Scalable and Controlled Synthesis of Metal-Organic Framework Materials Using Continuous Flow Reactors. React. Chem. Eng. 2016, 1, 352–360. [Google Scholar] [CrossRef] [Green Version]
- Julien, P.A.; Mottillo, C.; Friščić, T. Metal-Organic Frameworks Meet Scalable and Sustainable Synthesis. Green Chem. 2017, 19, 2729–2747. [Google Scholar] [CrossRef]
- Zhou, H.-C.; Long, J.R.; Yaghi, O.M. Introduction to Metal-Organic Frameworks. Chem. Rev. 2012, 112, 673–674. [Google Scholar] [CrossRef]
- Haldar, R.; Heinke, L.; Wöll, C. Advanced Photoresponsive Materials Using the Metal-Organic Framework Approach. Adv. Mater. 2020, 32, 1905227. [Google Scholar] [CrossRef] [Green Version]
- Rajasree, S.S.; Yu, J.; Pratik, S.M.; Li, X.; Wang, R.; Kumbhar, A.S.; Goswami, S.; Cramer, C.J.; Deria, P. Superradiance and Directional Exciton Migration in Metal-Organic Frameworks. J. Am. Chem. Soc. 2022, 144, 1396–1406. [Google Scholar] [CrossRef]
- Garibay, S.J.; Stork, J.R.; Cohen, S.M. The Use of Metalloligands in Metal-Organic Frameworks. In Progress in Inorganic Chemistry; Karlin, K.D., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; pp. 335–378. [Google Scholar] [CrossRef]
- Alkhatib, I.I.; Garlisi, C.; Pagliaro, M.; Al-Ali, K.; Palmisano, G. Metal-Organic Frameworks for Photocatalytic CO2 Reduction under Visible Radiation: A Review of Strategies and Applications. Catal. Today 2020, 340, 209–224. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, D.; Deng, X.; Li, Z. Metal-Organic Frameworks (MOFs) for Photocatalytic CO2 Reduction. Catal. Sci. Technol. 2017, 7, 4893–4904. [Google Scholar] [CrossRef]
- Nguyen, H.L. Metal-Organic Frameworks for Photocatalytic Water Splitting. Sol. RRL 2021, 5, 2100198. [Google Scholar] [CrossRef]
- Howarth, A.J.; Liu, Y.; Li, P.; Li, Z.; Wang, T.C.; Hupp, J.T.; Farha, O.K. Chemical, Thermal and Mechanical Stabilities of Metal-Organic Frameworks. Nat. Rev. Mater. 2016, 1, 15018. [Google Scholar] [CrossRef]
- Lyu, H.; Chen, O.I.-F.; Hanikel, N.; Hossain, M.I.; Flaig, R.W.; Pei, X.; Amin, A.; Doherty, M.D.; Impastato, R.K.; Glover, T.G.; et al. Carbon Dioxide Capture Chemistry of Amino Acid Functionalized Metal-Organic Frameworks in Humid Flue Gas. J. Am. Chem. Soc. 2022, 144, 2387–2396. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Tu, B.; Liu, Q.; Shu, Y.; Liang, C.-C.; Diercks, C.S.; Yaghi, O.M.; Zhang, Y.-B.; Deng, H.; Li, Q. Anisotropic Reticular Chemistry. Nat. Rev. Mater. 2020, 5, 764–779. [Google Scholar] [CrossRef]
- Mondloch, J.E.; Bury, W.; Fairen-Jimenez, D.; Kwon, S.; DeMarco, E.J.; Weston, M.H.; Sarjeant, A.A.; Nguyen, S.T.; Stair, P.C.; Snurr, R.Q.; et al. Vapor-Phase Metalation by Atomic Layer Deposition in a Metal-Organic Framework. J. Am. Chem. Soc. 2013, 135, 10294–10297. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, S.; Liu, Y.; Sarkar, A.K.; Bediako, J.K.; Kim, H.Y.; Yun, Y.-S. Super-Stable, Highly Efficient, and Recyclable Fibrous Metal-Organic Framework Membranes for Precious Metal Recovery from Strong Acidic Solutions. Small 2019, 15, 1805242. [Google Scholar] [CrossRef]
- Fan, W.; Yuan, S.; Wang, W.; Feng, L.; Liu, X.; Zhang, X.; Wang, X.; Kang, Z.; Dai, F.; Yuan, D.; et al. Optimizing Multivariate Metal-Organic Frameworks for Efficient C2H2/CO2 Separation. J. Am. Chem. Soc. 2020, 142, 8728–8737. [Google Scholar] [CrossRef]
- Hu, Z.; Gami, A.; Wang, Y.; Zhao, D. A Triphasic Modulated Hydrothermal Approach for the Synthesis of Multivariate Metal-Organic Frameworks with Hydrophobic Moieties for Highly Efficient Moisture-Resistant CO2 Capture. Adv. Sustain. Syst. 2017, 1, 1700092. [Google Scholar] [CrossRef]
- Mon, M.; Bruno, R.; Tiburcio, E.; Viciano-Chumillas, M.; Kalinke, L.H.G.; Ferrando-Soria, J.; Armentano, D.; Pardo, E. Multivariate Metal-Organic Frameworks for the Simultaneous Capture of Organic and Inorganic Contaminants from Water. J. Am. Chem. Soc. 2019, 141, 13601–13609. [Google Scholar] [CrossRef] [PubMed]
- Stassen, I.; Burtch, N.; Talin, A.; Falcaro, P.; Allendorf, M.; Ameloot, R. An Updated Roadmap for the Integration of Metal-Organic Frameworks with Electronic Devices and Chemical Sensors. Chem. Soc. Rev. 2017, 46, 3185–3241. [Google Scholar] [CrossRef] [PubMed]
- Andrés, M.A.; Vijjapu, M.T.; Surya, S.G.; Shekhah, O.; Salama, K.N.; Serre, C.; Eddaoudi, M.; Roubeau, O.; Gascón, I. Methanol and Humidity Capacitive Sensors Based on Thin Films of MOF Nanoparticles. ACS Appl. Mater. Interfaces 2020, 12, 4155–4162. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Z.; Zhang, X.; Hao, X.; Niu, B.; Li, C. Metal-Organic Frameworks Materials for Capacitive Gas Sensors. Adv. Mater. Technol. 2021, 6, 2100127. [Google Scholar] [CrossRef]
- Hara, Y.; Kanamori, K.; Nakanishi, K. Self-Assembly of Metal-Organic Frameworks into Monolithic Materials with Highly Controlled Trimodal Pore Structures. Angew. Chem. Int. Ed. 2019, 58, 19047–19053. [Google Scholar] [CrossRef]
- Luo, Y.; Ahmad, M.; Schug, A.; Tsotsalas, M. Rising Up: Hierarchical Metal-Organic Frameworks in Experiments and Simulations. Adv. Mater. 2019, 31, 1901744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, G.J.H.; Wu, Y.; Shah, B.B.; Koh, J.J.; Liu, C.K.; Zhao, D.; Cheetham, A.K.; Wang, J.; Ding, J. 3D-Printing of Pure Metal-Organic Framework Monoliths. ACS Mater. Lett. 2019, 1, 147–153. [Google Scholar] [CrossRef]
- Falcaro, P.; Buso, D.; Hill, A.J.; Doherty, C.M. Patterning Techniques for Metal Organic Frameworks. Adv. Mater. 2012, 24, 3153–3168. [Google Scholar] [CrossRef]
- Ma, K.; Idrees, K.B.; Son, F.A.; Maldonado, R.; Wasson, M.C.; Zhang, X.; Wang, X.; Shehayeb, E.; Merhi, A.; Kaafarani, B.R.; et al. Fiber Composites of Metal-Organic Frameworks. Chem. Mater. 2020, 32, 7120–7140. [Google Scholar] [CrossRef]
- Kalaj, M.; Bentz, K.C.; Ayala, S.; Palomba, J.M.; Barcus, K.S.; Katayama, Y.; Cohen, S.M. MOF-Polymer Hybrid Materials: From Simple Composites to Tailored Architectures. Chem. Rev. 2020, 120, 8267–8302. [Google Scholar] [CrossRef]
- Barbosa, J.C.; Gonçalves, R.; Valverde, A.; Martins, P.M.; Petrenko, V.I.; Márton, M.; Fidalgo-Marijuan, A.; Fernández de Luis, R.; Costa, C.M.; Lanceros-Méndez, S. Metal Organic Framework Modified Poly(Vinylidene Fluoride-Co-Hexafluoropropylene) Separator Membranes to Improve Lithium-Ion Battery Capacity Fading. Chem. Eng. J. 2022, 443, 136329. [Google Scholar] [CrossRef]
- Salazar, H.; Martins, P.M.; Valverde, A.; Fernández de Luis, R.; Vilas-Vilela, J.L.; Ferdov, S.; Botelho, G.; Lanceros-Mendez, S. Reusable Nanocomposite Membranes for Highly Efficient Arsenite and Arsenate Dual Removal from Water. Adv Mater. Inter 2022, 9, 2101419. [Google Scholar] [CrossRef]
- Tovar, G.I.; Valverde, A.; Mendes-Felipe, C.; Wuttke, S.; Fidalgo-Marijuan, A.; Larrea, E.S.; Lezama, L.; Zheng, F.; Reguera, J.; Lanceros-Méndez, S.; et al. Chitin/Metal-Organic Framework Composites as Wide-Range Adsorbent. ChemSusChem 2021, 14, 2892–2901. [Google Scholar] [CrossRef]
- Reizabal, A.; Costa, C.M.; Saiz, P.G.; Gonzalez, B.; Pérez-Álvarez, L.; Fernández de Luis, R.; Garcia, A.; Vilas-Vilela, J.L.; Lanceros-Méndez, S. Processing Strategies to Obtain Highly Porous Silk Fibroin Structures with Tailored Microstructure and Molecular Characteristics and Their Applicability in Water Remediation. J. Hazard. Mater. 2021, 403, 123675. [Google Scholar] [CrossRef] [PubMed]
- Valverde, A.; Gonçalves, R.; Silva, M.M.; Wuttke, S.; Fidalgo-Marijuan, A.; Costa, C.M.; Vilas-Vilela, J.L.; Laza, J.M.; Arriortua, M.I.; Lanceros-Méndez, S.; et al. Metal-Organic Framework Based PVDF Separators for High Rate Cycling Lithium-Ion Batteries. ACS Appl. Energy Mater. 2020, 3, 11907–11919. [Google Scholar] [CrossRef]
- Ding, M.; Cai, X.; Jiang, H.-L. Improving MOF Stability: Approaches and Applications. Chem. Sci. 2019, 10, 10209–10230. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Wang, K.-Y.; Day, G.S.; Ryder, M.R.; Zhou, H.-C. Destruction of Metal-Organic Frameworks: Positive and Negative Aspects of Stability and Lability. Chem. Rev. 2020, 120, 13087–13133. [Google Scholar] [CrossRef]
- Bunzen, H. Chemical Stability of Metal-Organic Frameworks for Applications in Drug Delivery. ChemNanoMat 2021, 7, 998–1007. [Google Scholar] [CrossRef]
- Sajid, M. Toxicity of Nanoscale Metal Organic Frameworks: A Perspective. Environ. Sci. Pollut. Res. 2016, 23, 14805–14807. [Google Scholar] [CrossRef] [Green Version]
- Chong, S.; Lee, S.; Kim, B.; Kim, J. Applications of Machine Learning in Metal-Organic Frameworks. Coord. Chem. Rev. 2020, 423, 213487. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, Y.; Zhou, T.; Sundmacher, K. Identification of Optimal Metal-Organic Frameworks by Machine Learning: Structure Decomposition, Feature Integration, and Predictive Modeling. Comput. Chem. Eng. 2022, 160, 107739. [Google Scholar] [CrossRef]
- Altintas, C.; Altundal, O.F.; Keskin, S.; Yildirim, R. Machine Learning Meets with Metal Organic Frameworks for Gas Storage and Separation. J. Chem. Inf. Model. 2021, 61, 2131–2146. [Google Scholar] [CrossRef] [PubMed]
- Nandy, A.; Duan, C.; Kulik, H.J. Using Machine Learning and Data Mining to Leverage Community Knowledge for the Engineering of Stable Metal-Organic Frameworks. J. Am. Chem. Soc. 2021, 143, 17535–17547. [Google Scholar] [CrossRef] [PubMed]
- Lyu, P.; Maurin, G. H2S Stability of Metal-Organic Frameworks: A Computational Assessment. ACS Appl. Mater. Interfaces 2021, 13, 4813–4822. [Google Scholar] [CrossRef] [PubMed]
- Nandy, A.; Terrones, G.; Arunachalam, N.; Duan, C.; Kastner, D.W.; Kulik, H.J. MOFSimplify, Machine Learning Models with Extracted Stability Data of Three Thousand Metal-Organic Frameworks. Sci. Data 2022, 9, 74. [Google Scholar] [CrossRef]
- Wen, Y.; Zhang, P.; Sharma, V.K.; Ma, X.; Zhou, H.-C. Metal-Organic Frameworks for Environmental Applications. Cell Rep. Phys. Sci. 2021, 2, 100348. [Google Scholar] [CrossRef]
- Abdelhamid, H.N.; Mathew, A.P. Cellulose–Metal Organic Frameworks (CelloMOFs) Hybrid Materials and Their Multifaceted Applications: A Review. Coord. Chem. Rev. 2022, 451, 214263. [Google Scholar] [CrossRef]
- Li, J.; Wang, H.; Yuan, X.; Zhang, J.; Chew, J.W. Metal-Organic Framework Membranes for Wastewater Treatment and Water Regeneration. Coord. Chem. Rev. 2020, 404, 213116. [Google Scholar] [CrossRef]
- Le, T.; Chen, X.; Dong, H.; Tarpeh, W.; Perea-Cachero, A.; Coronas, J.; Martin, S.M.; Mohammad, M.; Razmjou, A.; Esfahani, A.R.; et al. An Evolving Insight into Metal Organic Framework-Functionalized Membranes for Water and Wastewater Treatment and Resource Recovery. Ind. Eng. Chem. Res. 2021, 60, 6869–6907. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, T.; Wang, B. Shaping of Metal-Organic Frameworks, a Critical Step toward Industrial Applications. Matter 2022, 5, 1070–1091. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, X.; Zhang, S.; Li, S.; Cao, S.; Pei, X.; Zhou, J.; Feng, X.; Wang, B. Shaping of Metal-Organic Frameworks: From Fluid to Shaped Bodies and Robust Foams. J. Am. Chem. Soc. 2016, 138, 10810–10813. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-M.; Xie, L.-H.; Wu, Y. Recent Advances in the Shaping of Metal-Organic Frameworks. Inorg. Chem. Front. 2020, 7, 2840–2866. [Google Scholar] [CrossRef]
- Wagner, M.; Andrew Lin, K.-Y.; Oh, W.-D.; Lisak, G. Metal-Organic Frameworks for Pesticidal Persistent Organic Pollutants Detection and Adsorption—A Mini Review. J. Hazard. Mater. 2021, 413, 125325. [Google Scholar] [CrossRef] [PubMed]
- Dapaah, M.F.; Niu, Q.; Yu, Y.-Y.; You, T.; Liu, B.; Cheng, L. Efficient Persistent Organic Pollutant Removal in Water Using MIL-Metal-Organic Framework Driven Fenton-like Reactions: A Critical Review. Chem. Eng. J. 2022, 431, 134182. [Google Scholar] [CrossRef]
- Pi, Y.; Li, X.; Xia, Q.; Wu, J.; Li, Y.; Xiao, J.; Li, Z. Adsorptive and Photocatalytic Removal of Persistent Organic Pollutants (POPs) in Water by Metal-Organic Frameworks (MOFs). Chem. Eng. J. 2018, 337, 351–371. [Google Scholar] [CrossRef]
Metal | MOFs | pH | Light Source * | [Cr (VI)]0 | Loading (g/L) | Photo-Oxidation Efficiency | Ref. | ||
---|---|---|---|---|---|---|---|---|---|
Efficiency (%) | Time (min) | ||||||||
Fe | MIL-53 | 4 | Vis. | 20 | 1 | 100 | 40 | [223] | |
MIL-88B-NH2 | 2 | Vis. | 8 | 0.5 | 100 | 45 | [224] | ||
MIL-53-NH2 | 15 | 60 | |||||||
MIL-101-NH2 | 100 | 60 | |||||||
MIL-100/HPMo 5% | 4 | Vis. | 20 | 1 | 100 | 8 | [225] | ||
MIL-53/rGO | 4 | Vis. | 20 | 1 | 100 | 80 | [226] | ||
MIL-100/Au 1% | 4 | Vis. | 20 | 1 | 20 | [227] | |||
MIL-100/Pd 1% | 100 | 16 | |||||||
MIL-100/Pt 1% | 8 | ||||||||
MIL-68/AgBr 30%/Ag 1.5% | 4 | Vis. | 20 | 0.25 | 99.9 | 6 | [228] | ||
MIL-88B-NH2/Ag/AgCl | 2 | - | 20 | 0.5 | 85.7 | 45 | [229] | ||
MIL 53/g-C3N4 3% | 2–3 | Vis. | 10 | 0.4 | 100 | 180 | [230] | ||
MIL-101-NH2 10%/g-C3N4 | 2–3 | Vis. | 10 | 0.5 | 76.0 | 60 | [231] | ||
MIL-101-NH2/g-C3N4 | 7 | SL | 20 | 1 | 66 | 90 | [232] | ||
2 | 91 | ||||||||
MIL-68 | 3 | Vis. | 20 | 0.25 | 100 | 5 | [233] | ||
MIL-53/WO3 | 2.5 | SL | 45 | 1 | 94 | 240 | [234] | ||
MIL-100/WO3 80 wt.%/120 | 2 | LED-Vis | 5 | 0.25 | 100 | 60 | [235] | ||
NH2-MIL 88B/TiO2 | 7 | Vis. | 10 | 0.5 | 98.6 | 35 | [201] | ||
MIL-53/Bi12O17Cl2 100 mg | 2 | WL | 10 | 0.5 | 99.2 | 120 | [236] | ||
MIL-100/Bi12O17Cl2 200 mg | 2 | WL | 10 | 0.5 | 99.3 | 120 | [237] | ||
MIL-100/PANI 9% | 2 | WL | 10 | 0.25 | 100 | 90 | [238] | ||
Fe-MOF/MoS2 1.5% | 2 | Vis. | 20 | 1 | 98.8 | 60 | [215] | ||
MIL-53 | 4 | Vis. | 20 | 0.5 | 51 | 30 | [216] | ||
MIL-53/CQDs/2% Au | 100 | 20 | |||||||
MIL-53/CQDs/2% Ag | - | - | |||||||
MIL-53/CQDs/2% Pd | 80 | 30 | |||||||
MIL-101-NH2/Sand-Cl (50%) | 2 | Vis. (1000 W) | 20 | 1.0 | 98.8 | 60 | [239] | ||
MIL-101-NH2/Al2O3 | 2 | SL | 5 | 0.3 | 100 | 8 | [240] | ||
STA-12-Mn-Fe | 2 | SL | 20 | 0.25 | 100 | 30 | [241] | ||
MIL-125-NH2/BiO | 2 | Vis. | 40 | 1 | 100 | 120 | [242] | ||
Cr | MIL-101/Pt | NR | Vis. | NR | NR | 100 | 40 | [243] | |
MIL-101/Pd | 240 | ||||||||
MIL-101/Pd-Cu | NR | Vis. | NR | NR | 100 | 30 | [211] | ||
In | MIL-68 | 2 | Vis. | 20 | 1 | 97 | 180 | [244] | |
MIL-68-NH2/In0.4Fe0.6 | 2 | Vis. | 20 | 0.4 | 99 | 120 | [245] |
Metal | MOFs | pH | Illumination Source | [Cr (VI)]0 (ppms) | Photocatalyst Loading (g/L) | Photo-Oxidation Efficiency | Ref. | |
---|---|---|---|---|---|---|---|---|
Removal Percentage (%) | Time (min) | |||||||
Zr | UIO-66-NH2 | 2 | Vis. | 10 | 0.5 | 97 | 80 | [173] |
UiO-66 | 2 | UV/Vis. | 10 | 0.5 | 35 | 170 | [255] | |
UiO-66-NH2 | 100 | 100 | ||||||
UiO-66-NO2 | 12 | 170 | ||||||
UiO-66-Br | 22 | 170 | ||||||
UiO-66-NH2/rGO | 2 | Visible | 10 | 0.5 | 100 | 100 | [256] | |
UiO-66/g-C3N4 | 2 | Visible | 10 | 0.5 | 99 | 40 | [257] | |
UiO-66(OH)2/H2BDC-(OH)2 20% | 2 | UV-LED | 10 | 0.4 | 100 | 40 | [258] | |
UiO-66-NH2-100/PTCDA-10 | 2 | LED-Visible | 10 | 0.375 | 100 | 100 | [259] | |
UiO-66/BiOBr/Cotton fibers | 2.5 | Visible | 5 | 2 | 99 | 80 | [260] | |
UiO-66-NH2−def | 2 | Visible | 5 | 0.35 | 100 | 100 | [46] | |
UiO-66-NH2/Zr/Hf/ -Al2O3 membrane | 2 | Visible | 5 | - | 98 | 120 | [261] | |
Ti | MIL-125/NH2 | 2.1 | 80 | 60 | [222] | |||
MIL-125/MoS2 | 6 | Visible | 48 | 0.4 | 20 | 70 | [242] | |
MIL-125/Ag2S | 38 | |||||||
MIL-125/CdS | 40 | |||||||
MIL-125/CuS | 60 | |||||||
MIL-125-NH2/NTU-9 | 3 | Visible | 10 | 1 | 100 | 90 | [213] | |
5 | 70 | |||||||
8 | 80 | |||||||
TiO2/MIL-125/core shell | 2 | Visible | 5 | 0.3 | 100 | 60 | [243] | |
NH2-MIL-125/BiOI | 2 | Visible | 40 | 1 | 100 | 120 | [211] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García, A.; Rodríguez, B.; Rosales, M.; Quintero, Y.M.; G. Saiz, P.; Reizabal, A.; Wuttke, S.; Celaya-Azcoaga, L.; Valverde, A.; Fernández de Luis, R. A State-of-the-Art of Metal-Organic Frameworks for Chromium Photoreduction vs. Photocatalytic Water Remediation. Nanomaterials 2022, 12, 4263. https://doi.org/10.3390/nano12234263
García A, Rodríguez B, Rosales M, Quintero YM, G. Saiz P, Reizabal A, Wuttke S, Celaya-Azcoaga L, Valverde A, Fernández de Luis R. A State-of-the-Art of Metal-Organic Frameworks for Chromium Photoreduction vs. Photocatalytic Water Remediation. Nanomaterials. 2022; 12(23):4263. https://doi.org/10.3390/nano12234263
Chicago/Turabian StyleGarcía, Andreina, Bárbara Rodríguez, Maibelin Rosales, Yurieth M. Quintero, Paula G. Saiz, Ander Reizabal, Stefan Wuttke, Leire Celaya-Azcoaga, Ainara Valverde, and Roberto Fernández de Luis. 2022. "A State-of-the-Art of Metal-Organic Frameworks for Chromium Photoreduction vs. Photocatalytic Water Remediation" Nanomaterials 12, no. 23: 4263. https://doi.org/10.3390/nano12234263
APA StyleGarcía, A., Rodríguez, B., Rosales, M., Quintero, Y. M., G. Saiz, P., Reizabal, A., Wuttke, S., Celaya-Azcoaga, L., Valverde, A., & Fernández de Luis, R. (2022). A State-of-the-Art of Metal-Organic Frameworks for Chromium Photoreduction vs. Photocatalytic Water Remediation. Nanomaterials, 12(23), 4263. https://doi.org/10.3390/nano12234263