Analysis of Thermal Stress in Vanadium Dioxide Thin Films by Finite Element Method
Abstract
:1. Introduction
2. Analytical Model
3. Finite Element Model
4. Results and Discussion
4.1. Effect of Temperature and Substrates
4.2. Distribution of Thermal Stress
4.3. Effect of Interlayer
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wei, H.; Yan, X.; Gu, J.; Ren, F.; Dong, X.; Guan, H.; Geng, C.; Liang, S.; Fan, Q.; Li, L.; et al. A universal approach to fabricating infrared-shielding smart coatings based on vanadium dioxide. Sol. Energy Mater. Sol. Cells 2022, 241, 111728. [Google Scholar] [CrossRef]
- Wang, Q.; Shen, B.; Huang, J.; Yang, H.; Pei, G.; Yang, H. A spectral self-regulating parabolic trough solar receiver integrated with vanadium dioxide-based thermochromic coating. Appl. Energy 2021, 285, 116453. [Google Scholar] [CrossRef]
- Ma, H.; Xiao, X.; Zhang, X.; Liu, K. Recent advances for phase-transition materials for actuators. J. Appl. Phys. 2020, 128, 101101. [Google Scholar] [CrossRef]
- Saleki, Z. Nonlinear control of switchable wavelength-selective absorption in a one-dimensional photonic crystal including ultrathin phase transition material-vanadium dioxide. Sci. Rep. 2022, 12, 10715. [Google Scholar] [CrossRef]
- Ke, Y.; Chen, J.; Lin, G.; Wang, S.; Zhou, Y.; Yin, J.; Lee, P.S. Smart Windows: Electro-, Thermo-, Mechano-, Photochromics, and Beyond. Adv. Energy Mater. 2019, 9, 1902066. [Google Scholar] [CrossRef]
- Shen, N.; Chen, S.; Huang, R.; Huang, J.; Li, J.; Shi, R.; Niu, S.; Amini, A.; Cheng, C. Vanadium dioxide for thermochromic smart windows in ambient conditions. Mater. Today Energy 2021, 21, 100827. [Google Scholar] [CrossRef]
- Islam, M.M.; Shakil, S.I.; Shaheen, N.M.; Bayati, P.; Haghshenas, M. An overview of microscale indentation fatigue: Composites, thin films, coatings, and ceramics. Micron 2021, 148, 103110. [Google Scholar] [CrossRef]
- Chen, Y.S.; Lin, C.C.; Chin, T.S.; Chang, J.Y.; Sung, C.K. Residual stress analysis of electrodeposited thick CoMnP monolayers and CoMnP/Cu multilayers. Surf. Coat. Technol. 2022, 434, 128169. [Google Scholar] [CrossRef]
- Xiao, Z.; Chen, C.; Zhu, H.; Hu, Z.; Nagarajan, B.; Guo, L.; Zeng, X. Study of residual stress in selective laser melting of Ti6Al4V. Mater. Des. 2020, 193, 108846. [Google Scholar] [CrossRef]
- Ilhom, S.; Mohammad, A.; Shukla, D.; Grasso, J.; Willis, B.; Okyay, A.; Biyikli, N. Low-Temperature As-Grown Crystalline β-Ga2O3 Films via Plasma-Enhanced Atomic Layer Deposition. ACS Appl. Mater. Interfaces 2021, 13, 8538–8551. [Google Scholar] [CrossRef]
- Al-mashaal, A.; Bunting, A.; Cheung, R. Evaluation of residual stress in sputtered tantalum thin-film. Appl. Surf. Sci. 2016, 371, 571–575. [Google Scholar] [CrossRef] [Green Version]
- Escalona, M.; Bhuyan, H.; Ibacache, S.; Retamal, M.J.; Saikia, P.; Borgohain, C.; Valenzuela, J.C.; Veloso, F.; Favre, M.; Wyndham, E.S. Study of titanium nitride film growth by plasma enhanced pulsed laser deposition at different experimental conditions. Surf. Coat. Technol. 2021, 405, 126492. [Google Scholar] [CrossRef]
- Hsueh, C.H. Thermal Stresses in Elastic Multilayer Systems. Thin Solid Films 2002, 418, 182–188. [Google Scholar] [CrossRef]
- Gunnars, J.; Wiklund, U. Determination of growth-induced strain and thermo-elastic properties of coatings by curvature measurements. Mater. Sci. Eng. A 2002, 336, 7–21. [Google Scholar] [CrossRef]
- Bielawski, M.; Seo, D. Residual stress development in UMS TiN coatings. Surf. Coat. Technol. 2005, 200, 1476–1482. [Google Scholar] [CrossRef]
- Chawla, V.; Jayaganthan, R.; Chandra, R. Analysis of thermal stress in magnetron sputtered TiN coating by finite element method. Mater. Chem. Phys. 2009, 114, 290–294. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.P. Applicability range of Stoney’s formula and modified formulas for a film/substrate bilayer. J. Appl. Phys. 2006, 99, 053513. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Xu, B.; Wang, H.; Jiang, Y.; Wu, Y. Modeling of thermal residual stresses in multilayer coatings with graded properties and compositions. Thin Solid Films 2006, 497, 223–231. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, W.; Chen, W.; Zheng, Y. Recent progress on vanadium dioxide nanostructures and devices: Fabrication, properties, applications and perspectives. Nanomaterials 2021, 11, 338. [Google Scholar] [CrossRef]
- Zhan, Y.; Xiao, X.; Lu, Y.; Cao, Z.; Qi, S.; Huan, C.; Cheng, H.; Shi, J.; Xu, G. Enhanced thermal stability and thermochromic properties of VOx-based thin films by room-temperature magnetron sputtering. Sol. Energy Mater. Sol. Cells 2018, 174, 102–111. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Chen, K.; Shen, H.; Wang, Y.C.; Hedhili, M.; Zhang, X.; Li, J.; Shan, Z.W. Achieving room-temperature M2-phase VO2 nanowires for superior thermal actuation. Nano Res. 2021, 14, 4146–4153. [Google Scholar] [CrossRef]
- Shi, R.; Cai, X.; Wang, W.; Wang, J.; Kong, D.; Cai, N.; Chen, P.; He, P.; Wu, Z.; Amini, A.; et al. Single-Crystalline Vanadium Dioxide Actuators. Adv. Funct. Mater. 2019, 29, 1900527. [Google Scholar] [CrossRef]
- Tsui, Y.C.; Clyne, T.W. An analytical model for predicting residual stresses in progressively deposited coatings Part 1: Planar geometry. Thin Solid Films 1997, 306, 23–33. [Google Scholar] [CrossRef]
- Nagashima, K.; Yanagida, T.; Tanaka, H.; Kawai, T. Stress relaxation effect on transport properties of strained vanadium dioxide epitaxial thin films. Phys. Rev. B 2006, 74, 172106. [Google Scholar] [CrossRef] [Green Version]
- Spaepen, F. Interfaces and stresses in thin films. Acta Mater. 2000, 48, 31–42. [Google Scholar] [CrossRef]
- Suhir, E. Predicted thermally induced stresses in, and the bow of, a circular substrate/thin-film structure. J. Appl. Phys. 2000, 88, 2363–2370. [Google Scholar] [CrossRef]
- Kucharczyk, D.; Niklewski, T. Accurate X-ray determination of the lattice parameters and the thermal expansion coefficients of VO2 near the transition temperature. J. Appl. Crystallogr. 1979, 12, 370–373. [Google Scholar] [CrossRef]
- Gao, C.; Zhao, Z.; Li, X. Modeling of thermal stresses in elastic multilayer coating systems. J. Appl. Phys. 2015, 117, 055305. [Google Scholar] [CrossRef]
- Tian, X.; Xiong, S.; Zhang, Y.; Zhang, K. Simulation of thermal stress in ion beam sputtered Ta2O5/SiO2 multilayer coatings on different substrates by finite element analysis. Surf. Coat. Technol. 2019, 362, 225–233. [Google Scholar] [CrossRef]
- Dobrovinskaya, E.R.; Lytvynov, L.A.; Pishchik, V. Sapphire: Material, Manufacturing, Applications; Springer: New York, NY, USA, 2009; pp. 55–125. [Google Scholar]
- Shang, P.; Xiong, S.; Li, L.; Tian, D.; Ai, W. Investigation on thermal stability of Ta2O5, TiO2 and Al2O3 coatings for application at high temperature. Appl. Surf. Sci. 2013, 285, 713–720. [Google Scholar] [CrossRef]
- Chawla, V.; Jayaganthan, R.; Chandra, R. Finite element analysis of thermal stress in magnetron sputtered Ti coating. J. Mater. Process. Technol. 2008, 200, 205–211. [Google Scholar] [CrossRef]
- Liu, H.; Tao, J.; Gautreau, Y.; Zhang, P.Z.; Xu, J. Simulation of thermal stresses in SiC–Al2O3 composite tritium penetration barrier by finite-element analysis. Mater. Des. 2009, 30, 2785–2790. [Google Scholar] [CrossRef]
- Benqin, Z.; Haizheng, T.; Zhao, X. Effect of buffer layer on thermochromic performances of VO2 films fabricated by magnetron sputtering. Infrared Phys. Technol. 2016, 75, 22–25. [Google Scholar]
- Panagopoulou, M.; Gagaoudakis, E.; Aperathitis, E.; Michail, I.; Kiriakidis, G.; Tsoukalas, D.; Raptis, Y. The effect of buffer layer on the thermochromic properties of undoped radio frequency sputtered VO2 thin films. Thin Solid Films 2015, 594, 310–315. [Google Scholar] [CrossRef]
- Cho, Y.; Aritomi, S.; Kanki, T.; Kinoshita, K.; Endo, N.; Kondo, Y.; Shindo, D.; Tanaka, H.; Murakami, Y. Morphology of phase-separated VO2 films deposited on TiO2-(001) substrate. Mater. Res. Bull. 2018, 102, 289–293. [Google Scholar] [CrossRef]
- Ding, Z.; Cui, Y.; Wan, D.; Luo, H.; Gao, Y. High-performance thermal sensitive VO2(B) thin films prepared by sputtering with TiO2(A) buffer layer and first-principles calculations study. RSC Adv. 2017, 7, 29496–29504. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Miao, L.; Liu, C.; Li, C.; Asaka, T.; Kang, Y.; Iwamoto, Y.; Tanemura, S.; Gu, H.; Su, H. Solution-Processed VO2-SiO2 Composite Films with Simultaneously Enhanced Luminous Transmittance, Solar Modulation Ability and Anti-Oxidation property. Sci. Rep. 2014, 4, 7000. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, L.; Gu, J.; Yan, X.; Lu, J.; Dou, S.; Li, Y.; Wang, L. Analysis of Thermal Stress in Vanadium Dioxide Thin Films by Finite Element Method. Nanomaterials 2022, 12, 4262. https://doi.org/10.3390/nano12234262
Wang Y, Wang L, Gu J, Yan X, Lu J, Dou S, Li Y, Wang L. Analysis of Thermal Stress in Vanadium Dioxide Thin Films by Finite Element Method. Nanomaterials. 2022; 12(23):4262. https://doi.org/10.3390/nano12234262
Chicago/Turabian StyleWang, Yuemin, Lebin Wang, Jinxin Gu, Xiangqiao Yan, Jiarui Lu, Shuliang Dou, Yao Li, and Lei Wang. 2022. "Analysis of Thermal Stress in Vanadium Dioxide Thin Films by Finite Element Method" Nanomaterials 12, no. 23: 4262. https://doi.org/10.3390/nano12234262
APA StyleWang, Y., Wang, L., Gu, J., Yan, X., Lu, J., Dou, S., Li, Y., & Wang, L. (2022). Analysis of Thermal Stress in Vanadium Dioxide Thin Films by Finite Element Method. Nanomaterials, 12(23), 4262. https://doi.org/10.3390/nano12234262