Thermal Analysis of Radiative Darcy–Forchheimer Nanofluid Flow Across an Inclined Stretching Surface
Abstract
:1. Introduction
2. Mathematical Modeling
2.1. Solution Methodology
2.2. Local Non-Similarity Method:
Property | Symbol | Defined |
---|---|---|
Viscosity | ||
Density | ||
Heat capacitance | ||
Electric conductivity | ||
Thermal conductivity | ||
Thermal expansion |
Materials | (J/kgK) | (kg/m3) | k(W/mK) | ||
---|---|---|---|---|---|
Titanium Oxide (TiO2) | 686.2 | 4250 | 8.9538 | ||
Aluminum Oxide (Al2O3) | 765 | 3970 | 40.0 | 8.5 | |
Blood | 3594 | 1053 | 0.492 | 0.18 |
3. Result and Discussion
4. Conclusions
- ⮚
- The flow is decelerated with increasing estimations of the magnetic number and the Casson parameter.
- ⮚
- By enhancing the magnetic number , the flow field decreases while the thermal profile increases.
- ⮚
- Additionally, the thermal profile rises as the porosity parameter is estimated to be higher, and the flow field also decreases.
- ⮚
- Thermal profiles are significantly increased with radiation parameters.
- ⮚
- An increment in the porosity parameter and the Eckert number reduces the local Nusselt number, whereas they increase the thermal boundary layer thickness for both considered cases.
- ⮚
- A greater magnetic parameter (stronger Lorentz force) enhances the magnitude of the drag coefficient.
- ⮚
- To validate the existing analysis, a comparative study is conducted, which proves the consistency of the current results.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Velocity components (ms−1) | |
Coordinate System (m) | |
Temperature (K) | |
Surface temperature (K) | |
Ambient temperature (K) | |
Fluid density (kg/m−3) | |
Thermal diffusivity (m2/s) | |
Non-uniform inertial coefficient | |
Inertial coefficient | |
Casson fluid parameter | |
Drag force | |
Boltzmann constant | |
Angle of inclination | |
Permeability of porous medium | |
Heat generation/absorption coefficient | |
Dimensionless stream function | |
Dimensionless temperature | |
Pseudo-similarity variable | |
Non-similarity variable | |
Magnetic parameter | |
Grashof number | |
Radiation parameter | |
Reynolds number | |
Prandtl number | |
Porosity parameter | |
Eckert number | |
Base fluid, nano fluid | |
Magnetic parameter(kgs−2A−1) | |
Thermal conductivity (W/mK) | |
Specific heat(m2s−−2k−1) | |
Electrical conductivity (kg−1m−3s3A2) | |
Skin friction coefficient | |
Local Nusselt number | |
Surface shear stress (kgm−1s−−2) |
References
- Mahian, O.; Kianifar, A.; Kleinstreuer, C.; Moh’d, A.A.-N.; Pop, I.; Sahin, A.Z.; Wongwises, S. A review of entropy generation in nanofluid flow. Int. J. Heat Mass Transf. 2013, 65, 514–532. [Google Scholar] [CrossRef]
- Esfe, M.H.; Hajmohammad, H.; Toghraie, D.; Rostamian, H.; Mahian, O.; Wongwises, S. Multi-objective optimization of nanofluid flow in double tube heat exchangers for applications in energy systems. Energy 2017, 137, 160–171. [Google Scholar] [CrossRef]
- Chahregh, H.S.; Dinarvand, S. TiO2-Ag/blood hybrid nanofluid flow through an artery with applications of drug delivery and blood circulation in the respiratory system. Int. J. Numer. Methods Heat Fluid Flow 2020, 30, 4775–4796. [Google Scholar] [CrossRef]
- Chiolerio, A.; Garofalo, E.; Mattiussi, F.; Crepaldi, M.; Fortunato, G.; Iovieno, M. Waste heat to power conversion by means of thermomagnetic hydrodynamic energy harvester. Appl. Energy 2020, 277, 115591. [Google Scholar] [CrossRef]
- Bhatti, M.M.; Arain, M.B.; Zeeshan, A.; Ellahi, R.; Doranehgard, M.H. Swimming of Gyrotactic Microorganism in MHD Williamson nanofluid flow between rotating circular plates embedded in porous medium: Application of thermal energy storage. J. Energy Storage 2022, 45, 103511. [Google Scholar] [CrossRef]
- Pordanjani, A.H.; Aghakhani, S.; Afrand, M.; Sharifpur, M.; Meyer, J.P.; Xu, H.; Ali, H.M.; Karimi, N.; Cheraghian, G. Nanofluids: Physical phenomena, applications in thermal systems and the environment effects-a critical review. J. Clean. Prod. 2021, 320, 128573. [Google Scholar] [CrossRef]
- Shahid, A.; Bhatti, M.M.; Ellahi, R.; Mekheimer, K.S. Numerical experiment to examine activation energy and bi-convection Carreau nanofluid flow on an upper paraboloid porous surface: Application in solar energy. Sustain. Energy Technol. Assess. 2022, 52, 102029. [Google Scholar] [CrossRef]
- Ali, A.; Khan, H.S.; Saleem, S.; Hussan, M. EMHD Nanofluid Flow with Radiation and Variable Heat Flux Effects along a Slandering Stretching Sheet. Nanomaterials 2022, 12, 3872. [Google Scholar] [CrossRef]
- Puneeth, V.; Manjunatha, S.; Madhukesh, J.; Ramesh, G. Three dimensional mixed convection flow of hybrid casson nanofluid past a non-linear stretching surface: A modified Buongiorno’s model aspects. Chaos Solitons Fractals 2021, 152, 111428. [Google Scholar] [CrossRef]
- Anwar, M.I.; Rafique, K.; Misiran, M.; Khan, I. Numerical solution of casson nanofluid flow over a non-linear inclined surface with soret and dufour effects by keller-box method. Front. Phys. 2019, 7, 139. [Google Scholar]
- Farooq, U.; Hussain, M.; Ijaz, M.A.; Khan, W.A.; Farooq, F.B. Impact of non-similar modeling on Darcy-Forchheimer-Brinkman model for forced convection of Casson nano-fluid in non-Darcy porous media. Int. Commun. Heat Mass Transf. 2021, 125, 105312. [Google Scholar] [CrossRef]
- Asjad, M.I.; Usman, M.; Ali, A.; Awrejcewicz, J.; Bednarek, M. Insight into the Dynamics of Fractional Maxwell Nano-Fluids Subject to Entropy Generation, Lorentz Force and Heat Source via Finite Difference Scheme. Nanomaterials 2022, 12, 1745. [Google Scholar] [CrossRef] [PubMed]
- Amjad, M.; Ahmed, I.; Ahmed, K.; Alqarni, M.S.; Akbar, T.; Muhammad, T. Numerical Solution of Magnetized Williamson Nanofluid Flow over an Exponentially Stretching Permeable Surface with Temperature Dependent Viscosity and Thermal Conductivity. Nanomaterials 2022, 12, 3661. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Farooq, U.; Sheremet, M. Nonsimilar convective thermal transport analysis of EMHD stagnation Casson nanofluid flow subjected to particle shape factor and thermal radiations. Int. Commun. Heat Mass Transf. 2022, 137, 106230. [Google Scholar] [CrossRef]
- Zari, I.; Shafiq, A.; Rasool, G.; Sindhu, T.N.; Khan, T.S. Double-stratified Marangoni boundary layer flow of Casson nanoliquid: Probable error application. J. Therm. Anal. Calorim. 2022, 147, 6913–6929. [Google Scholar] [CrossRef]
- Hartmann, J.; Lazarus, F. Hg-dynamics II. Theory of laminar flow of electrically conductive Liquids in a Homogeneous Magnetic Field. Fys. Med. 1937, 15, 1–27. [Google Scholar]
- Anusha, T.; Mahabaleshwar, U.S.; Sheikhnejad, Y. An MHD of nanofluid flow over a porous stretching/shrinking plate with mass transpiration and Brinkman ratio. Transp. Porous Media 2022, 142, 333–352. [Google Scholar] [CrossRef]
- Dey, S.; Mukhopadhyay, S. MHD nanofluid flow over an absorbent plate in the company of chemical response and zero nanoparticle flux. Forces Mech. 2022, 7, 100102. [Google Scholar] [CrossRef]
- Evaristo, E.; Colman, F.; Alves, C.; Trevizoli, P. Mathematical modelling and simulation results of a linear thermomagnetic motor with gravity return. J. Magn. Magn. Mater. 2022, 544, 168668. [Google Scholar] [CrossRef]
- Arulmozhi, S.; Sukkiramathi, K.; Santra, S.; Edwan, R.; Fernandez-Gamiz, U.; Noeiaghdam, S. Heat and mass transfer analysis of radiative and chemical reactive effects on MHD nanofluid over an infinite moving vertical plate. Results Eng. 2022, 14, 100394. [Google Scholar] [CrossRef]
- Jan, A.; Mushtaq, M.; Farooq, U.; Hussain, M. Nonsimilar analysis of magnetized Sisko nanofluid flow subjected to heat generation/absorption and viscous dissipation. J. Magn. Magn. Mater. 2022, 564, 170153. [Google Scholar] [CrossRef]
- Vishalakshi, A.B.; Mahabaleshwar, U.S.; Sarris, I.E. An MHD Fluid Flow over a Porous Stretching/Shrinking Sheet with Slips and Mass Transpiration. Micromachines 2022, 13, 116. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Jaradat, M.M.M.; Siddique, I.; Mousa, A.A.A.; Abdal, S.; Mustafa, Z.; Ali, H.M. On Thermal Distribution for Darcy–Forchheimer Flow of Maxwell Sutterby Nanofluids over a Radiated Extending Surface. Nanomaterials 2022, 12, 1834. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Ullah, I.; Alam, M.M.; Weera, W.; Galal, A.M. Numerical Simulations through PCM for the Dynamics of Thermal Enhancement in Ternary MHD Hybrid Nanofluid Flow over Plane Sheet, Cone, and Wedge. Symmetry 2022, 14, 2419. [Google Scholar] [CrossRef]
- Rasool, G.; Shafiq, A.; Hussain, S.; Zaydan, M.; Wakif, A.; Chamkha, A.J.; Bhutta, M.S. Significance of Rosseland’s Radiative Process on Reactive Maxwell Nanofluid Flows over an Isothermally Heated Stretching Sheet in the Presence of Darcy–Forchheimer and Lorentz Forces: Towards a New Perspective on Buongiorno’s Model. Micromachines 2022, 13, 368. [Google Scholar] [CrossRef] [PubMed]
- Eswaramoorthi, S.; Thamaraiselvi, S.; Loganathan, K. Exploration of Darcy–Forchheimer Flows of Non-Newtonian Casson and Williamson Conveying Tiny Particles Experiencing Binary Chemical Reaction and Thermal Radiation: Comparative Analysis. Math. Comput. Appl. 2022, 27, 52. [Google Scholar] [CrossRef]
- Minkowycz, W.J.; Sparrow, E.M. Numerical solution scheme for local nonsimilarity boundary-layer analysis. Numer. Heat Transf. Part B Fundam. 1978, 1, 69–85. [Google Scholar] [CrossRef]
- Khanafer, K.; Vafai, K.; Lightstone, M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transf. 2003, 46, 3639–3653. [Google Scholar] [CrossRef]
- Rahman, M.M.; Al-Hatmi, M.M. Hydromagnetic Boundary Layer Flow and Heat Transfer Characteristics of a Nanofluid over an Inclined Stretching Surface in the Presence of a Convective Surface: A Comprehensive Study. Sultan Qaboos Univ. J. Sci. 2014, 19, 53–76. [Google Scholar] [CrossRef] [Green Version]
- Hassanien, I.A.; Abdullah, A.A.; Gorla, R.S.R. Flow and heat transfer in a power-law fluid over a nonisothermal stretching sheet. Math. Comput. Model. 1998, 28, 105–116. [Google Scholar] [CrossRef]
- Salleh, M.; Nazar, R.; Pop, I. Boundary layer flow and heat transfer over a stretching sheet with Newtonian heating. J. Taiwan Inst. Chem. Eng. 2010, 41, 651–655. [Google Scholar] [CrossRef]
- Alkasasbeh, H.; Swalmeh, M.; Bani Saeed, H.; Al Faqih, F.; Talafha, A. Investigation on CNTs-water and human blood based Casson nanofluid flow over a stretching sheet under impact of magnetic field. Front. Heat Mass Transf. 2020, 14. [Google Scholar] [CrossRef]
Pr | ||||
---|---|---|---|---|
Hassanien et al. [30] | Salleh et al. [31] | Alkasasbeh et al. [32] | Present Study | |
0.72 | 0.46325 | 0.46317 | 0.46316 | 0.4986316451 |
1 | 0.58198 | 0.58198 | 0.58198 | 0.5975809450 |
3 | 1.16525 | 1.16522 | 1.16524 | 1.1643563783 |
5 | 1.56806 | 1.56807 | 1.5674514653 | |
7 | 1.89548 | 1.89550 | 1.8949925136 | |
10 | 2.30801 | 2.30821 | 2.30820 | 2.3153556715 |
100 | 7.74925 | 7.76249 | 7.76250 | 7.7714379105 |
+ Blood | + Blood | ||||
---|---|---|---|---|---|
0.2 | 0.1 | 0.2 | 1.5 | 0.4901010947 | 0.4274598638 |
0.3 | 0.5475697381 | 0.4345869467 | |||
0.2 | 0.1 | ‒0.3248568971 | ‒0.2776837564 | ||
0.2 | ‒0.2785986793 | ‒0.2185968970 | |||
0.2 | 0.5353017252 | 0.4509675312 | |||
0.3 | 0.6140624653 | 0.4766629609 | |||
1.5 | 0.5673852317 | 0.2543942356 | |||
2.0 | 0.5379535782 | 0.2348687475 |
Q | + Blood | + Blood | |||||
---|---|---|---|---|---|---|---|
0.1 | 0.1 | 0.01 | 1.5 | 0.1 | 0.2 | 1.6224248090 | 1.6875579845 |
0.3 | 1.5786434551 | 1.6468293505 | |||||
0.1 | 0.1 | 1.6224248090 | 1.6875579845 | ||||
0.2 | 1.4359703456 | 1.4687930578 | |||||
0.01 | 1.6224248090 | 1.6875579845 | |||||
0.03 | 1.5783456731 | 1.6134984516 | |||||
1.5 | 1.6224248090 | 1.6875579845 | |||||
2.0 | 1.6203188133 | 1.6234887611 | |||||
0.1 | 1.6224248090 | 1.6875579845 | |||||
0.3 | 1.5643867971 | 1.6436739765 | |||||
0.1 | 1.6224248090 | 1.6875579845 | |||||
0.3 | 1.7659238752 | 1.7535962614 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, J.; Jan, A.; Farooq, U.; Hussain, M.; Khan, W.A. Thermal Analysis of Radiative Darcy–Forchheimer Nanofluid Flow Across an Inclined Stretching Surface. Nanomaterials 2022, 12, 4291. https://doi.org/10.3390/nano12234291
Cui J, Jan A, Farooq U, Hussain M, Khan WA. Thermal Analysis of Radiative Darcy–Forchheimer Nanofluid Flow Across an Inclined Stretching Surface. Nanomaterials. 2022; 12(23):4291. https://doi.org/10.3390/nano12234291
Chicago/Turabian StyleCui, Jifeng, Ahmed Jan, Umer Farooq, Muzamil Hussain, and Waseem Asghar Khan. 2022. "Thermal Analysis of Radiative Darcy–Forchheimer Nanofluid Flow Across an Inclined Stretching Surface" Nanomaterials 12, no. 23: 4291. https://doi.org/10.3390/nano12234291
APA StyleCui, J., Jan, A., Farooq, U., Hussain, M., & Khan, W. A. (2022). Thermal Analysis of Radiative Darcy–Forchheimer Nanofluid Flow Across an Inclined Stretching Surface. Nanomaterials, 12(23), 4291. https://doi.org/10.3390/nano12234291