Nano-Dimensional Carbon Nanosphere Supported Non-Precious Metal Oxide Composite: A Cathode Material for Sea Water Reduction
Abstract
:1. Introduction
2. Experimental Section
2.1. Synthesis of Carbon Nanospheres (UCSs)
2.2. Synthesis of Carbon Nanosphere Functionalized Bimetallic Composite
2.3. Study of Electrocatalytic Behavior
3. Results and Discussion
3.1. Characterization of the Composites and the Effect of UCSs
3.2. HER from Alkaline NaCl Solution
3.3. HER from Alkaline Seawater
3.4. Stability of CCuU
3.5. Effects of Cl− and Activity of CCuU
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gnanasekar, P.; Eswaran, M.K.; Palanichamy, G.; Ng, T.K.; Schwingenschlögl, U.; Ooi, B.S.; Kulandaivel, J. Sustained Solar-Powered Electrocatalytic H 2 Production by Seawater Splitting Using Two-Dimensional Vanadium Disulfide. ACS Sustain. Chem. Eng. 2021, 9, 8572–8580. [Google Scholar] [CrossRef]
- Mahmood, N.; Yao, Y.; Zhang, J.W.; Pan, L.; Zhang, X.; Zou, J.J. Electrocatalysts for Hydrogen Evolution in Alkaline Electrolytes: Mechanisms, Challenges, and Prospective Solutions. Adv. Sci. 2018, 5, 1700464. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Li, F.; Zhao, Y.; Li, W.; Zhao, Z.; Li, Y.; Yang, H.; Fan, K.; Zhang, P.; Sun, L. Selective Electrochemical Alkaline Seawater Oxidation Catalyzed by Cobalt Carbonate Hydroxide Nanorod Arrays with Sequential Proton-Electron Transfer Properties. ACS Sustain. Chem. Eng. 2021, 9, 905–913. [Google Scholar] [CrossRef]
- Yu, L.; Wu, L.; Song, S.; McElhenny, B.; Zhang, F.; Chen, S.; Ren, Z. Hydrogen Generation from Seawater Electrolysis over a Sandwich-like NiCoN|NixP|NiCoN Microsheet Array Catalyst. ACS Energy Lett. 2020, 5, 2681–2689. [Google Scholar] [CrossRef]
- Wu, L.; Yu, L.; Zhu, Q.; McElhenny, B.; Zhang, F.; Wu, C.; Xing, X.; Bao, J.; Chen, S.; Ren, Z. Boron-Modified Cobalt Iron Layered Double Hydroxides for High Efficiency Seawater Oxidation. Nano Energy 2021, 83, 105838. [Google Scholar] [CrossRef]
- Yu, L.; Zhu, Q.; Song, S.; McElhenny, B.; Wang, D.; Wu, C.; Qin, Z.; Bao, J.; Yu, Y.; Chen, S.; et al. Non-Noble Metal-Nitride Based Electrocatalysts for High-Performance Alkaline Seawater Electrolysis. Nat. Commun. 2019, 10, 5106. [Google Scholar] [CrossRef] [Green Version]
- Amikam, G.; Nativ, P.; Gendel, Y. Chlorine-Free Alkaline Seawater Electrolysis for Hydrogen Production. Int. J. Hydrog. Energy 2018, 43, 6504–6514. [Google Scholar] [CrossRef]
- Yao, Y.; Gao, X.; Meng, X. Recent Advances on Electrocatalytic and Photocatalytic Seawater Splitting for Hydrogen Evolution. Int. J. Hydrog. Energy 2021, 46, 9087–9100. [Google Scholar] [CrossRef]
- Shi, L.; Rossi, R.; Son, M.; Hall, D.M.; Hickner, M.A.; Gorski, C.A.; Logan, B.E. Using Reverse Osmosis Membranes to Control Ion Transport during Water Electrolysis. Energy Environ. Sci. 2020, 13, 3138–3148. [Google Scholar] [CrossRef]
- Ros, C.; Murcia-López, S.; Garcia, X.; Rosado, M.; Arbiol, J.; Llorca, J.; Morante, J.R. Facing Seawater Splitting Challenges by Regeneration with Ni–Mo–Fe Bifunctional Electrocatalyst for Hydrogen and Oxygen Evolution. ChemSusChem 2021, 14, 2872–2881. [Google Scholar] [CrossRef]
- Chen, I.W.P.; Hsiao, C.H.; Huang, J.Y.; Peng, Y.H.; Chang, C.Y. Highly Efficient Hydrogen Evolution from Seawater by Biofunctionalized Exfoliated MoS2 Quantum Dot Aerogel Electrocatalysts That Is Superior to Pt. ACS Appl. Mater. Interfaces 2019, 11, 14159–14165. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Wang, K.; Sun, Q.; Zhang, L.; Li, J.; Li, D.; Sze, P.W.; Liang, Y.; Sun, X.; Fu, X.Z.; et al. High-Performance Ammonium Cobalt Phosphate Nanosheet Electrocatalyst for Alkaline Saline Water Oxidation. Adv. Sci. 2021, 2100498, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Wang, M.; Xu, Y.; Wang, X.; Li, X.; Liu, J.; Cui, X.; Jiang, L. Porous CoP/Co2P Heterostructure for Efficient Hydrogen Evolution and Application in Magnesium/Seawater Battery. J. Power Sources 2021, 486, 229351. [Google Scholar] [CrossRef]
- Jin, H.; Liu, X.; Vasileff, A.; Jiao, Y.; Zhao, Y.; Zheng, Y.; Qiao, S.Z. Single-Crystal Nitrogen-Rich Two-Dimensional Mo5N6 Nanosheets for Efficient and Stable Seawater Splitting. ACS Nano 2018, 12, 12761–12769. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Ai, H.; Chen, M.; Zhou, P.; Li, B.; Liu, D.; Du, X.; Lo, K.H.; Ng, K.W.; Wang, S.P.; et al. Multi-Phase Heterostructure of CoNiP/CoxP for Enhanced Hydrogen Evolution Under Alkaline and Seawater Conditions by Promoting H2O Dissociation. Small 2021, 17, 2007557. [Google Scholar] [CrossRef]
- Yuan, W.; Cui, Z.; Zhu, S.; Li, Z.; Wu, S.; Liang, Y. Structure Engineering of Electrodeposited NiMo Films for Highly Efficient and Durable Seawater Splitting. Electrochim. Acta 2021, 365, 137366. [Google Scholar] [CrossRef]
- Sarno, M.; Ponticorvo, E.; Scarpa, D. Active and Stable Graphene Supporting Trimetallic Alloy-Based Electrocatalyst for Hydrogen Evolution by Seawater Splitting. Electrochem. Commun. 2020, 111, 106647. [Google Scholar] [CrossRef]
- Huang, W.; Zhou, D.; Qi, G.; Liu, X. Fe-Doped MoS2 Nanosheets Array for High-Current-Density Seawater Electrolysis. Nanotechnology 2021, 32, 415403. [Google Scholar] [CrossRef]
- Jin, H.; Wang, X.; Tang, C.; Vasileff, A.; Li, L.; Slattery, A.; Qiao, S.Z. Stable and Highly Efficient Hydrogen Evolution from Seawater Enabled by an Unsaturated Nickel Surface Nitride. Adv. Mater. 2021, 33, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Li, Z.; Wang, P.; Zhai, X.; Wang, X.; Li, T. Carbon Quantum Dots for Advanced Electrocatalysis. J. Energy Chem. 2021, 55, 279–294. [Google Scholar] [CrossRef]
- Jana, J.; Chung, J.S.; Hur, S.H. Carbon Dot Supported Bimetallic Nanocomposite for the Hydrogen Evolution Reaction. J. Alloy. Compd. 2021, 859, 157895. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, X.; Huang, B.; Xie, Z. Surface Engineering of Rh Catalysts with N/S-Codoped Carbon Nanosheets toward High-Performance Hydrogen Evolution from Seawater. ACS Sustain. Chem. Eng. 2019, 7, 18835–18843. [Google Scholar] [CrossRef]
- Panda, C.; Menezes, P.W.; Zheng, M.; Orthmann, S.; Driess, M. In Situ Formation of Nanostructured Core-Shell Cu3N-CuO to Promote Alkaline Water Electrolysis. ACS Energy Lett. 2019, 4, 747–754. [Google Scholar] [CrossRef]
- Zhai, Y.; Ji, Y.; Wang, G.; Zhu, Y.; Liu, H.; Zhong, Z.; Su, F. Controllable Wet Synthesis of Multicomponent Copper-Based Catalysts for Rochow Reaction. RSC Adv. 2015, 5, 73011–73019. [Google Scholar] [CrossRef]
- Choudhary, S.; Sarma, J.V.N.; Pande, S.; Ababou-Girard, S.; Turban, P.; Lepine, B.; Gangopadhyay, S. Oxidation Mechanism of Thin Cu Films: A Gateway towards the Formation of Single Oxide Phase. AIP Adv. 2018, 8, 055114. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.S.; Choi, B.; Kim, Y.B. Development of Highly Active Bifunctional Electrocatalyst Using Coon Carbon Nanotubes for Oxygen Reduction and Oxygen Evolution. Sci. Rep. 2018, 8, 2543. [Google Scholar] [CrossRef] [Green Version]
- Jayakumar, M.; Hemalatha, K.; Chander, A.A.; Sahu, A.K.; Prakash, A.S. Origin of Charge Storage in Cobalt Oxide—Anchored Graphene Nanocomposites. Carbon N. Y. 2017, 125, 168–179. [Google Scholar] [CrossRef]
- Wei, G.; He, J.; Zhang, W.; Zhao, X.; Qiu, S.; An, C. Rational Design of Co(II) Dominant and Oxygen Vacancy Defective CuCo2O4@CQDs Hollow Spheres for Enhanced Overall Water Splitting and Supercapacitor Performance. Inorg. Chem. 2018, 57, 7380–7389. [Google Scholar] [CrossRef]
- Cheng, S.; DelaCruz, S.; Chen, C.; Tang, Z.; Shi, T.; Carraro, C.; Maboudian, R. Hierarchical Co3O4/CuO Nanorod Array Supported on Carbon Cloth for Highly Sensitive Non-Enzymatic Glucose Biosensing. Sens. Actuators B Chem. 2019, 298, 126860. [Google Scholar] [CrossRef]
- Zang, N.; Wu, Z.; Wang, J.; Jin, W. Rational Design of Cu–Co Thiospinel Ternary Sheet Arrays for Highly Efficient Electrocatalytic Water Splitting. J. Mater. Chem. A 2020, 8, 1799–1807. [Google Scholar] [CrossRef]
- Tahira, A.; Ibupoto, Z.H.; Willander, M.; Nur, O. Advanced Co3O4–CuO Nano-Composite Based Electrocatalyst for Efficient Hydrogen Evolution Reaction in Alkaline Media. Int. J. Hydrog. Energy 2019, 44, 26148–26157. [Google Scholar] [CrossRef]
- Liao, Q.; Li, N.; Jin, S.; Yang, G.; Wang, C. All-Solid-State Symmetric Supercapacitor Based on Co3O4 Nanoparticles on Vertically Aligned Graphene All-Solid-State Symmetric Supercapacitor Based on Co3O4 Nanoparticles on Vertically Aligned Graphene. ACS Nano 2015, 9, 5310–5317. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Feng, Y.; Lin, W.; Su, X.; Ji, S.; Li, L.; Zhang, W.; Pollet, B.G.; Li, H. CuO–NiO/Co3O4 Hybrid Nanoplates as Highly Active Catalyst for Ammonia Borane Hydrolysis. Int. J. Hydrog. Energy 2020, 45, 8168–8176. [Google Scholar] [CrossRef]
- Permatasari, F.A.; Aimon, A.H.; Iskandar, F.; Ogi, T.; Okuyama, K. Role of C–N Configurations in the Photoluminescence of Graphene Quantum Dots Synthesized by a Hydrothermal Route. Sci. Rep. 2016, 6, 21042. [Google Scholar] [CrossRef] [Green Version]
- Bi, Z.; Li, T.; Su, H.; Ni, Y.; Yan, L. Transparent Wood Film Incorporating Carbon Dots as Encapsulating Material for White Light-Emitting Diodes. ACS Sustain. Chem. Eng. 2018, 6, 9314–9323. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, Y.; Ziaee, M.A.; Lu, K.; Wang, R. Nanohybrid of Carbon Quantum Dots/Molybdenum Phosphide Nanoparticle for Efficient Electrochemical Hydrogen Evolution in Alkaline Medium. ACS Appl. Mater. Interfaces 2018, 10, 9460–9467. [Google Scholar] [CrossRef] [PubMed]
- Dervishi, E.; Ji, Z.; Htoon, H.; Sykora, M.; Doorn, S.K. Raman Spectroscopy of Bottom-up Synthesized Graphene Quantum Dots: Size and Structure Dependence. Nanoscale 2019, 11, 16571–16581. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, S.; Zhou, J.; Liu, R.; Du, R.; Xu, H.; Liu, Z.; Zhang, J.; Liu, Z. Identifying Sp–Sp2 Carbon Materials by Raman and Infrared Spectroscopies. Phys. Chem. Chem. Phys. 2014, 16, 11303–11309. [Google Scholar] [CrossRef]
- Jena, A.; Penki, T.R.; Munichandraiah, N.; Shivashankar, S.A. Flower-like Porous Cobalt(II) Monoxide Nanostructures as Anode Material for Li-Ion Batteries. J. Electroanal. Chem. 2016, 761, 21–27. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, X.; Hu, X.; Zhou, W.; Zhao, Y. Effect of Formic Acid Treatment on the Structure and Catalytic Activity of Co3O4 for N2O Decomposition. Catal. Lett. 2019, 149, 1026–1036. [Google Scholar] [CrossRef]
- Ravindra, A.V.; Behera, B.C.; Padhan, P.; Lebedev, O.I.; Prellier, W. Tailoring of Crystal Phase and Néel Temperature of Cobalt Monoxides Nanocrystals with Synthetic Approach Conditions. J. Appl. Phys. 2014, 116, 033912. [Google Scholar] [CrossRef]
- Tiscornia, I.S.; Lacoste, A.M.; Gómez, L.E.; Boix, A.V. CuO–CeO2/SiO2 Coating on Ceramic Monolith: Effect of the Nature of the Catalyst Support on CO Preferential Oxidation in a H2-Rich Stream. Int. J. Hydrog. Energy 2020, 45, 6636–6650. [Google Scholar] [CrossRef]
- Roy, M.; Ghosh, S.; Naskar, M.K. Synthesis of Morphology Controllable Porous Co3O4 Nanostructures with Tunable Textural Properties and Their Catalytic Application. Dalton Trans. 2014, 43, 10248–20257. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.-H.; Yang, H.-H.; Zhang, X.-S.; Li, P.; Ma, C.-A. Effect of Carbon Nanofibers Microstructure on Electrocatalytic Activities of Pd Electrocatalysts for Ethanol Oxidation in Alkaline Medium. Int. J. Hydrog. Energy 2010, 35, 7667–7674. [Google Scholar] [CrossRef]
- Zeng, M.; Li, Y. Recent Advances in Heterogeneous Electrocatalysts for the Hydrogen Evolution Reaction. J. Mater. Chem. A 2015, 3, 14942–14962. [Google Scholar] [CrossRef]
- Shinagawa, T.; Garcia-Esparza, A.T.; Takanabe, K. Insight on Tafel Slopes from a Microkinetic Analysis of Aqueous Electrocatalysis for Energy Conversion. Sci. Rep. 2015, 5, 13801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, F.; Li, W.; Yang, J.; Han, G.; Yan, T.; Liu, X.; Rao, Y.; Liao, P.; Cao, Z.; Sun, Y. Interfacial Sites between Cobalt Nitride and Cobalt Act as Bifunctional Catalysts for Hydrogen Electrochemistry. ACS Energy Lett. 2019, 4, 1594–1601. [Google Scholar] [CrossRef]
- Mohammed-Ibrahim, J.; Moussab, H. Recent Advances on Hydrogen Production through Seawater Electrolysis. Mater. Sci. Energy Technol. 2020, 3, 780–807. [Google Scholar] [CrossRef]
- Lv, Q.; Han, J.; Tan, X.; Wang, W.; Cao, L.; Dong, B. Featherlike NiCoP Holey Nanoarrys for Efficient and Stable Seawater Splitting. ACS Appl. Energy Mater. 2019, 2, 3910–3917. [Google Scholar] [CrossRef]
- Lu, K.; Liu, Y.; Lin, F.; Cordova, I.A.; Gao, S.; Li, B.; Peng, B.; Xu, H.; Kaelin, J.; Coliz, D.; et al. LixNiO/Ni Heterostructure with Strong Basic Lattice Oxygen Enables Electrocatalytic Hydrogen Evolution with Pt-like Activity. J. Am. Chem. Soc. 2020, 142, 12613–12619. [Google Scholar] [CrossRef]
- Song, H.J.; Yoon, H.; Ju, B.; Lee, D.Y.; Kim, D.W. Electrocatalytic Selective Oxygen Evolution of Carbon-Coated Na2Co1−xFexP2O7 Nanoparticles for Alkaline Seawater Electrolysis. ACS Catal. 2020, 10, 702–709. [Google Scholar] [CrossRef]
- Kumaravel, V.; Abdel-Wahab, A. A Short Review on Hydrogen, Biofuel, and Electricity Production Using Seawater as a Medium. Energy Fuels 2018, 32, 6423–6437. [Google Scholar] [CrossRef]
- Tu, Q.; Liu, W.; Jiang, M.; Wang, W.; Kang, Q.; Wang, P.; Zhou, W.; Zhou, F. Preferential Adsorption of Hydroxide Ions onto Partially Crystalline NiFe-Layered Double Hydroxides Leads to Efficient and Selective OER in Alkaline Seawater. ACS Appl. Energy Mater. 2021, 4, 4630–4637. [Google Scholar] [CrossRef]
- Weber, D.J.; Janssen, M.; Oezaslan, M. Effect of Monovalent Cations on the HOR/HER Activity for Pt in Alkaline Environment. J. Electrochem. Soc. 2019, 166, F66–F73. [Google Scholar] [CrossRef]
- Goyal, A.; Koper, M.T.M. The Interrelated Effect of Cations and Electrolyte PH on the Hydrogen Evolution Reaction on Gold Electrodes in Alkaline Media. Angew. Chem. Int. Ed. 2021, 60, 13452–13462. [Google Scholar] [CrossRef]
- Gayen, P.; Saha, S.; Ramani, V. Selective Seawater Splitting Using Pyrochlore Electrocatalyst. ACS Appl. Energy Mater. 2020, 3, 3978–3983. [Google Scholar] [CrossRef]
- Lu, X.; Pan, J.; Lovell, E.; Tan, T.H.; Ng, Y.H.; Amal, R. A Sea-Change: Manganese Doped Nickel/Nickel Oxide Electrocatalysts for Hydrogen Generation from Seawater. Energy Environ. Sci. 2018, 11, 1898–1910. [Google Scholar] [CrossRef]
- Zheng, J. Seawater Splitting for High-Efficiency Hydrogen Evolution by Alloyed PtNix Electrocatalysts. Appl. Surf. Sci. 2017, 413, 360–365. [Google Scholar] [CrossRef]
- Niu, X.; Tang, Q.; He, B.; Yang, P. Robust and Stable Ruthenium Alloy Electrocatalysts for Hydrogen Evolution by Seawater Splitting. Electrochim. Acta 2016, 208, 180–187. [Google Scholar] [CrossRef]
- Lin, Y.; Sun, K.; Chen, X.; Chen, C.; Pan, Y.; Li, X.; Zhang, J. High-Precision Regulation Synthesis of Fe-Doped Co2P Nanorod Bundles as Efficient Electrocatalysts for Hydrogen Evolution in All-PH Range and Seawater. J. Energy Chem. 2021, 55, 92–101. [Google Scholar] [CrossRef]
Catalysts | (mV) @10 mA cm−2 | Tafel Slope mV dec−1 | ||
---|---|---|---|---|
Pt/C | 226 | 60 | 1.70 | 0.76 |
CuuU | 150 | 70 | 1.20 | 1.51 |
CouU | 192 | 135 | 1.48 | 0.59 |
CCu | 224 | 105 | 1.47 | 0.46 |
CCU | 120 | 64 | 1.43 | 0.77 |
CCuU | 115 | 82 | 1.00 | 1.20 |
Catalysts | (mV) @10 mA cm−2 | Tafel Slope mV dec−1 | ||
---|---|---|---|---|
Pt/C | 219 | 108 | 0.8 | 0.679 |
CuuU | 127 | 85 | 0.8 | 0.213 |
CouU | 198 | 115 | 0.9 | 0.265 |
CCu | 240 | 125 | 1.2 | 0.915 |
CCU | 87 | 73 | 1.0 | 0.962 |
CCuU | 73 | 58 | 0.7 | 0.173 |
Catalyst | s−1 | |||
---|---|---|---|---|
CuuU | 0.34 | 0.0199 | 11.7 | 11.7 |
CouU | 0.19 | 0.0186 | 10.9 | 10.9 |
Ccu | 0.09 | 0.0173 | 10.17 | 10.17 |
CCU | 0.5 | 0.0270 | 15.8 | 15.8 |
CcuU | 0.43 | 0.0302 | 17.7 | 17.7 |
Catalysts | (mV) @10 mA cm−2 | Tafel Slope mV dec−1 | ||
---|---|---|---|---|
Pt/C | 199 | 96 | 0.64 | 0.131 |
CuuU | 164 | 90 | 0.65 | 0.202 |
CouU | 171 | 103 | 0.82 | 0.316 |
CCu | 179 | 123 | 0.70 | 0.559 |
CCU | 186 | 115 | 0.64 | 0.294 |
CCuU | 128 | 87 | 0.70 | 0.961 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jana, J.; Van Phuc, T.; Chung, J.S.; Choi, W.M.; Hur, S.H. Nano-Dimensional Carbon Nanosphere Supported Non-Precious Metal Oxide Composite: A Cathode Material for Sea Water Reduction. Nanomaterials 2022, 12, 4348. https://doi.org/10.3390/nano12234348
Jana J, Van Phuc T, Chung JS, Choi WM, Hur SH. Nano-Dimensional Carbon Nanosphere Supported Non-Precious Metal Oxide Composite: A Cathode Material for Sea Water Reduction. Nanomaterials. 2022; 12(23):4348. https://doi.org/10.3390/nano12234348
Chicago/Turabian StyleJana, Jayasmita, Tran Van Phuc, Jin Suk Chung, Won Mook Choi, and Seung Hyun Hur. 2022. "Nano-Dimensional Carbon Nanosphere Supported Non-Precious Metal Oxide Composite: A Cathode Material for Sea Water Reduction" Nanomaterials 12, no. 23: 4348. https://doi.org/10.3390/nano12234348
APA StyleJana, J., Van Phuc, T., Chung, J. S., Choi, W. M., & Hur, S. H. (2022). Nano-Dimensional Carbon Nanosphere Supported Non-Precious Metal Oxide Composite: A Cathode Material for Sea Water Reduction. Nanomaterials, 12(23), 4348. https://doi.org/10.3390/nano12234348