Variable-Barrier Quantum Coulomb Blockade Effect in Nanoscale Transistors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Devices
2.2. Device Configuration for Theoretical Calculations
2.3. Theoretical Formalism
- (i)
- For infinitely high tunnel barriers, it would suffice to consider = = constant.
- (ii)
- For finite and bias-dependent barrier, the bare tunneling rate is varying with the bias voltage as presented below:
3. Results and Discussion
3.1. Experimental Evidences for the Effect of Variable Tunnel Barriers of a QD
3.2. Numerical Analysis of Electron Transport
- i.
- Electron Transport through Two Energy Levels:
- ii.
- Electron Transport through Three Energy Levels:
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kouwenhoven, L.P.; Marcus, C.M.; Mceuen, P.L.; Tarucha, S. Electron Transport in Quantum Dots. In Mesoscopic Electron Transport; Springer: Dordrecht, The Netherlands, 1997; pp. 105–214. [Google Scholar]
- Fuechsle, M.; Miwa, J.A.; Mahapatra, S.; Ryu, H.; Lee, S.; Warschkow, O.; Hollenberg, L.C.L.; Klimeck, G.; Simmons, M.Y. A Single-Atom Transistor. Nat. Nanotechnol. 2012, 7, 242–246. [Google Scholar] [CrossRef]
- Donnelly, M.B.; Keizer, J.G.; Chung, Y.; Simmons, M.Y. Monolithic Three-Dimensional Tuning of an Atomically Defined Silicon Tunnel Junction. Nano Lett. 2021, 21, 10092–10098. [Google Scholar] [CrossRef]
- Ruess, F.J.; Oberbeck, L.; Simmons, M.Y.; Goh, K.E.J.; Hamilton, A.R.; Hallam, T.; Schofield, S.R.; Curson, N.J.; Clark, R.G. Toward Atomic-Scale Device Fabrication in Silicon Using Scanning Probe Microscopy. Nano Lett. 2004, 4, 1969–1973. [Google Scholar] [CrossRef]
- West, A.; Hensen, B.; Jouan, A.; Tanttu, T.; Yang, C.H.; Rossi, A.; Gonzalez-Zalba, M.F.; Hudson, F.; Morello, A.; Reilly, D.J.; et al. Gate-Based Single-Shot Readout of Spins in Silicon. Nat. Nanotechnol. 2019, 14, 437–441. [Google Scholar] [CrossRef]
- Fulton, T.A.; Dolan, G.J. Observation of Single-Electron Charging Effects in Small Tunnel Junctions. Phys. Rev. Lett. 1987, 59, 109–112. [Google Scholar] [CrossRef]
- Maeda, K.; Okabayashi, N.; Kano, S.; Takeshita, S.; Tanaka, D.; Sakamoto, M.; Teranishi, T.; Majima, Y. Logic Operations of Chemically Assembled Single-Electron Transistor. ACS Nano 2012, 6, 2798–2803. [Google Scholar] [CrossRef]
- Guo, L.; Leobandung, E.; Chou, S.Y. A Room-Temperature Silicon Single-Electron Metal-Oxide-Semiconductor Memory with Nanoscale Floating-Gate and Ultranarrow Channel. Appl. Phys. Lett. 1997, 70, 850–852. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Huang, S.; Wang, J.Y.; Pan, D.; Zhao, J.; Xu, H.Q. A Charge Sensor Integration to Tunable Double Quantum Dots on Two Neighboring InAs Nanowires. Nanoscale 2021, 13, 1048–1054. [Google Scholar] [CrossRef]
- Hollenberg, L.C.L.; Dzurak, A.S.; Wellard, C.; Hamilton, A.R.; Reilly, D.J.; Milburn, G.J.; Clark, R.G. Charge-Based Quantum Computing Using Single Donors in Semiconductors. Phys. Rev. B Condens. Matter Mater. Phys. 2004, 69, 113301. [Google Scholar] [CrossRef] [Green Version]
- Vrijen, R.; Yablonovitch, E.; Wang, K.; Jiang, H.W.; Balandin, A.; Roychowdhury, V.; Mor, T.; DiVincenzo, D. Electron-Spin-Resonance Transistors for Quantum Computing in Silicon-Germanium Heterostructures. Phys. Rev. A At. Mol. Opt. Phys. 2000, 62, 10. [Google Scholar] [CrossRef]
- Lansbergen, G.P.; Ono, Y.; Fujiwara, A. Donor-Based Single Electron Pumps with Tunable Donor Binding Energy. Nano Lett. 2012, 12, 763–768. [Google Scholar] [CrossRef]
- Astafiev, O.; Antonov, V.; Kutsuwa, T.; Komiyama, S. A Single-Photon Detector in the Far-Infrared Range. Nature 2002, 403, 191–196. [Google Scholar]
- Nakajima, A. Application of Single-Electron Transistor to Biomolecule and Ion Sensors. Appl. Sci. 2016, 6, 94. [Google Scholar] [CrossRef] [Green Version]
- Ingold, G.-L.; Nazarov, Y.V. Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures (NATO Science Series B); Plenum Press: New York, NY, USA, 1992; ISBN 9780306442292. [Google Scholar]
- Averin, D.V.; Likharev, K.K. Coulomb Blockade of Single-Electron Tunneling, and Coherent Oscillations in Small Tunnel Junctions. J. Low Temp. Phys. 1986, 62, 345–373. [Google Scholar] [CrossRef]
- Altshuler, B.L.; Lee, P.A.; Webb, R.A. Mesoscopic Phenomena in Solids; Elsevier: North Holland, The Netherlands, 1991. [Google Scholar]
- Likharev, K.K. Correlated Discrete Transfer of Single Electrons in Ultrasmall Tunnel Junctions. IBM J. Res. Dev. 1988, 32, 144–158. [Google Scholar] [CrossRef]
- Shekhter, R.I. Zero Anomalies in the Resistance of a Tunnel Junction Containing Metallic Inclusions in the Oxide Layer. Sov. Phys. JETP 1973, 36, 747–750. [Google Scholar]
- Kulik, I.O.; Shekhter, I. Kinetic Phenomena and Charge Discreteness Effects in Granulated Media. Zh. Eksp. Teor. Fiz. 1975, 68, 623–640. [Google Scholar]
- Dolan, G.J.; Dunsmuir, J.H. Very Small (⪸20 Nm) Lithographic Wires, Dots, Rings, and Tunnel Junctions. Phys. B Condens. Matter 1988, 152, 7–13. [Google Scholar] [CrossRef]
- Nuryadi, R. Master Equation-Based Numerical Simulation in a Single Electron Transistor Using Matlab. In Numerical Simulations of Physical and Engineering Processes; IntechOpen: Rijeka, Croatia, 2011. [Google Scholar]
- Klein, M.; Lansbergen, G.P.; Mol, J.A.; Rogge, S.; Levine, R.D.; Remacle, F. Reconfigurable Logic Devices on a Single Dopant Atom—Operation up to a Full Adder by Using Electrical Spectroscopy. ChemPhysChem 2009, 10, 162–173. [Google Scholar] [CrossRef]
- Elzerman, J.M.; Hanson, R.; van Beveren, L.H.W.; Witkamp, B.; Vandersypen, L.M.K.; Kouwenhoven, L.P. Single-Shot Read-out of an Individual Electron Spin in a Quantum Dot. Nature 2004, 430, 431–435. [Google Scholar] [CrossRef] [Green Version]
- Koppens, F.H.L.; Buizert, C.; Tielrooij, K.J.; Vink, I.T.; Nowack, K.C.; Meunier, T.; Kouwenhoven, L.P.; Vandersypen, L.M.K. Driven Coherent Oscillations of a Single Electron Spin in a Quantum Dot. Nature 2006, 442, 766–771. [Google Scholar] [CrossRef] [Green Version]
- Petta, J.R.; Johnson, A.C.; Taylor, J.M.; Laird, E.A.; Yacoby, A.; Lukin, M.D.; Marcus, C.M.; Hanson, M.P.; Gossard, A.C. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 2005, 309, 2180–2184. [Google Scholar] [CrossRef] [Green Version]
- Cobden, D.H.; Bockrath, M.; Mc Euen, P.L.; Rinzler, A.G.; Smalley, R.E. Spin Splitting and Even-Odd Effects in Carbon Nanotubes. Phys. Rev. Lett. 1998, 81, 681–684. [Google Scholar] [CrossRef]
- Ashoori, R. Electrons in Artifical Atoms. Nature 1996, 379, 413–419. [Google Scholar] [CrossRef]
- Ralph, D.C.; Black, C.T.; Tinkham, M. Spectroscopic Measurements of Discrete Electronic States in Single Metal Particles. Phys. Rev. Lett. 1995, 74, 3241–3244. [Google Scholar] [CrossRef]
- Beenakker, C.W.J. Theory of Coulomb-Blockade Oscillations in the Conductance of a Quantum Dot. Phys. Rev. B 1991, 44, 1646–1656. [Google Scholar] [CrossRef] [Green Version]
- Von Delft, J.; Ralph, D.C. Spectroscopy of Discrete Energy Levels in Ultrasmall Metallic Grains. Phys. Rep. 2001, 345, 61–173. [Google Scholar] [CrossRef] [Green Version]
- Bonet, E.; Deshmukh, M.M.; Ralph, D.C. Solving Rate Equations for Electron Tunneling via Discrete Quantum States. Phys. Rev. B Condens. Matter Mater. Phys. 2002, 65, 045317. [Google Scholar] [CrossRef] [Green Version]
- Shin, S.J.; Lee, J.J.; Kang, H.J.; Choi, J.B.; Yang, S.R.E.; Takahashi, Y.; Hasko, D.G. Room-Temperature Charge Stability Modulated by Quantum Effects in a Nanoscale Silicon Island. Nano Lett. 2011, 11, 1591–1597. [Google Scholar] [CrossRef] [Green Version]
- Lim, W.H.; Zwanenburg, F.A.; Huebl, H.; Möttönen, M.; Chan, K.W.; Morello, A.; Dzurak, A.S. Observation of the Single-Electron Regime in a Highly Tunable Silicon Quantum Dot. Appl. Phys. Lett. 2009, 95, 242102. [Google Scholar] [CrossRef] [Green Version]
- Kiyama, H.; Korsch, A.; Nagai, N.; Kanai, Y.; Matsumoto, K.; Hirakawa, K.; Oiwa, A. Single-Electron Charge Sensing in Self-Assembled Quantum Dots. Sci. Rep. 2018, 8, 13188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamid, E.; Moraru, D.; Kuzuya, Y.; Mizuno, T.; Anh, L.T.; Mizuta, H.; Tabe, M. Electron-Tunneling Operation of Single-Donor-Atom Transistors at Elevated Temperatures. Phys. Rev. B Condens. Matter Mater. Phys. 2013, 87, 085420. [Google Scholar] [CrossRef]
- Moraru, D.; Samanta, A.; Anh, L.T.; Mizuno, T.; Mizuta, H.; Tabe, M. Transport Spectroscopy of Coupled Donors in Silicon Nano-Transistors. Sci. Rep. 2014, 4, 6219. [Google Scholar] [CrossRef] [PubMed]
- Samanta, A.; Moraru, D.; Mizuno, T.; Tabe, M. Electric-Field-Assisted Formation of an Interfacial Double-Donor Molecule in Silicon Nano-Transistors. Sci. Rep. 2015, 5, 17377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samanta, A.; Muruganathan, M.; Hori, M.; Ono, Y.; Mizuta, H.; Tabe, M.; Moraru, D. Single-Electron Quantization at Room Temperature in a-Few-Donor Quantum Dot in Silicon Nano-Transistors. Appl. Phys. Lett. 2017, 110, 093107. [Google Scholar] [CrossRef]
- Anderson, P.W. Localized Magnetic States in Metals. Phys. Rev. 1961, 124, 41–53. [Google Scholar] [CrossRef]
- Averin, D.V.; Korotkov, A.N.; Likharev, K.K. Theory Of single-Electron Charging of Quantum Wells and Dots. Phys. Rev. B 1991, 44, 6199–6211. [Google Scholar] [CrossRef] [Green Version]
- Sellier, H.; Lansbergen, G.P.; Caro, J.; Rogge, S.; Collaert, N.; Ferain, I.; Jurczak, M.; Biesemans, S. Transport spectroscopy of a single dopant in a gated silicon nanowire. Phys. Rev. Lett. 2006, 97, 206805. [Google Scholar] [CrossRef] [Green Version]
- Pierre, M.; Wacquez, R.; Jehl, X.; Sanquer, M.; Vinet, M.; Cueto, O. Single-Donor Ionization Energies in a Nanoscale CMOS Channel. Nat. Nanotechnol. 2010, 5, 133–137. [Google Scholar] [CrossRef] [Green Version]
- Lansbergen, G.P.; Rahman, R.; Wellard, C.J.; Woo, I.; Caro, J.; Collaert, N.; Biesemans, S.; Klimeck, G.; Hollenberg, L.C.L.; Rogge, S. Gate-induced quantum-confinement transition of a single dopant atom in a silicon FinFET. Nat. Phys. 2008, 4, 656–661. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yadav, P.; Chakraborty, S.; Moraru, D.; Samanta, A. Variable-Barrier Quantum Coulomb Blockade Effect in Nanoscale Transistors. Nanomaterials 2022, 12, 4437. https://doi.org/10.3390/nano12244437
Yadav P, Chakraborty S, Moraru D, Samanta A. Variable-Barrier Quantum Coulomb Blockade Effect in Nanoscale Transistors. Nanomaterials. 2022; 12(24):4437. https://doi.org/10.3390/nano12244437
Chicago/Turabian StyleYadav, Pooja, Soumya Chakraborty, Daniel Moraru, and Arup Samanta. 2022. "Variable-Barrier Quantum Coulomb Blockade Effect in Nanoscale Transistors" Nanomaterials 12, no. 24: 4437. https://doi.org/10.3390/nano12244437
APA StyleYadav, P., Chakraborty, S., Moraru, D., & Samanta, A. (2022). Variable-Barrier Quantum Coulomb Blockade Effect in Nanoscale Transistors. Nanomaterials, 12(24), 4437. https://doi.org/10.3390/nano12244437