Non-Additive Optical Response in Transition Metal Dichalcogenides Heterostructures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Raman Characterization
2.3. Spectroscopic Ellipsometry Characterization
2.4. Reflectance Measurements
3. Results and Discussion
3.1. Non-Additive Optical Effects in Phonon Spectra
3.2. Non-Additive Optical Effects in Optical Constants
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Lamberti, C.; Agostini, G. Characterization of Semiconductor Heterostructures and Nanostructures; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 978-0-444-59551-5. [Google Scholar]
- Alferov, Z.I. The History and Future of Semiconductor Heterostructures. Semiconductors 1998, 32, 1–14. [Google Scholar] [CrossRef]
- Smith, A.M.; Nie, S. Semiconductor Nanocrystals: Structure, Properties, and Band Gap Engineering. Acc. Chem. Res. 2010, 43, 190–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ning, C.-Z.; Dou, L.; Yang, P. Bandgap Engineering in Semiconductor Alloy Nanomaterials with Widely Tunable Compositions. Nat. Rev. Mater. 2017, 2, 17070. [Google Scholar] [CrossRef] [Green Version]
- Son, J.; Moetakef, P.; Jalan, B.; Bierwagen, O.; Wright, N.J.; Engel-Herbert, R.; Stemmer, S. Epitaxial SrTiO3 Films with Electron Mobilities Exceeding 30,000 Cm2 V−1 S−1. Nat. Mater. 2010, 9, 482–484. [Google Scholar] [CrossRef] [PubMed]
- Trier, F.; Christensen, D.V.; Pryds, N. Electron Mobility in Oxide Heterostructures. J. Phys. D Appl. Phys. 2018, 51, 293002. [Google Scholar] [CrossRef] [Green Version]
- Koval, O.Y.; Fedorov, V.V.; Bolshakov, A.D.; Fedina, S.V.; Kochetkov, F.M.; Neplokh, V.; Sapunov, G.A.; Dvoretckaia, L.N.; Kirilenko, D.A.; Shtrom, I.V.; et al. Structural and Optical Properties of Self-Catalyzed Axially Heterostructured GaPN/GaP Nanowires Embedded into a Flexible Silicone Membrane. Nanomaterials 2020, 10, 2110. [Google Scholar] [CrossRef] [PubMed]
- Fedorov, V.V.; Koval, O.Y.; Ryabov, D.R.; Fedina, S.V.; Eliseev, I.E.; Kirilenko, D.A.; Pidgayko, D.A.; Bogdanov, A.A.; Zadiranov, Y.M.; Goltaev, A.S.; et al. Nanoscale Gallium Phosphide Epilayers on Sapphire for Low-Loss Visible Nanophotonics. ACS Appl. Nano Mater. 2022, 5, 8846–8858. [Google Scholar] [CrossRef]
- Wang, Y.; Mambakkam, S.V.; Huang, Y.-X.; Wang, Y.; Ji, Y.; Xiao, C.; Yang, S.A.; Law, S.A.; Xiao, J.Q. Observation of Nonlinear Planar Hall Effect in Magnetic-Insulator–Topological-Insulator Heterostructures. Phys. Rev. B 2022, 106, 155408. [Google Scholar] [CrossRef]
- Khmelevskaia, D.; Markina, D.I.; Fedorov, V.V.; Ermolaev, G.A.; Arsenin, A.V.; Volkov, V.S.; Goltaev, A.S.; Zadiranov, Y.M.; Tzibizov, I.A.; Pushkarev, A.P.; et al. Directly Grown Crystalline Gallium Phosphide on Sapphire for Nonlinear All-Dielectric Nanophotonics. Appl. Phys. Lett. 2021, 118, 201101. [Google Scholar] [CrossRef]
- Chang, L.L.; Ploog, K. Molecular Beam Epitaxy and Heterostructures; Chang, L.L., Ploog, K., Eds.; Springer: Dordrecht, The Netherlands, 1985; ISBN 978-94-010-8744-5. [Google Scholar]
- Koma, A. Summary Abstract: Fabrication of Ultrathin Heterostructures with van Der Waals Epitaxy. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 1985, 3, 724. [Google Scholar] [CrossRef]
- Choudhury, T.H.; Zhang, X.; Al Balushi, Z.Y.; Chubarov, M.; Redwing, J.M. Epitaxial Growth of Two-Dimensional Layered Transition Metal Dichalcogenides. Annu. Rev. Mater. Res. 2020, 50, 155–177. [Google Scholar] [CrossRef]
- Ermolaev, G.A.; El-Sayed, M.A.; Yakubovsky, D.I.; Voronin, K.V.; Romanov, R.I.; Tatmyshevskiy, M.K.; Doroshina, N.V.; Nemtsov, A.B.; Voronov, A.A.; Novikov, S.M.; et al. Optical Constants and Structural Properties of Epitaxial MoS2 Monolayers. Nanomaterials 2021, 11, 1411. [Google Scholar] [CrossRef] [PubMed]
- Hutzler, A.; Fritsch, B.; Matthus, C.D.; Jank, M.P.M.; Rommel, M. Highly Accurate Determination of Heterogeneously Stacked Van-Der-Waals Materials by Optical Microspectroscopy. Sci. Rep. 2020, 10, 13676. [Google Scholar] [CrossRef] [PubMed]
- Frisenda, R.; Niu, Y.; Gant, P.; Molina-Mendoza, A.J.; Schmidt, R.; Bratschitsch, R.; Liu, J.; Fu, L.; Dumcenco, D.; Kis, A.; et al. Micro-Reflectance and Transmittance Spectroscopy: A Versatile and Powerful Tool to Characterize 2D Materials. J. Phys. D Appl. Phys. 2017, 50, 074002. [Google Scholar] [CrossRef]
- Geim, A.K.; Grigorieva, I.V. Van Der Waals Heterostructures. Nature 2013, 499, 419–425. [Google Scholar] [CrossRef] [Green Version]
- Novoselov, K.S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A.H. 2D Materials and van Der Waals Heterostructures. Science 2016, 353, aac9439. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Weiss, N.O.; Duan, X.; Cheng, H.-C.; Huang, Y.; Duan, X. Van Der Waals Heterostructures and Devices. Nat. Rev. Mater. 2016, 1, 16042. [Google Scholar] [CrossRef]
- Yankowitz, M.; Ma, Q.; Jarillo-Herrero, P.; LeRoy, B.J. Van Der Waals Heterostructures Combining Graphene and Hexagonal Boron Nitride. Nat. Rev. Phys. 2019, 1, 112–125. [Google Scholar] [CrossRef]
- Dean, C.R.; Young, A.F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K.L.; et al. Boron Nitride Substrates for High-Quality Graphene Electronics. Nat. Nanotechnol. 2010, 5, 722–726. [Google Scholar] [CrossRef]
- Wang, L.; Meric, I.; Huang, P.Y.; Gao, Q.; Gao, Y.; Tran, H.; Taniguchi, T.; Watanabe, K.; Campos, L.M.; Muller, D.A.; et al. One-Dimensional Electrical Contact to a Two-Dimensional Material. Science 2013, 342, 614–617. [Google Scholar] [CrossRef]
- Halbertal, D.; Finney, N.R.; Sunku, S.S.; Kerelsky, A.; Rubio-Verdú, C.; Shabani, S.; Xian, L.; Carr, S.; Chen, S.; Zhang, C.; et al. Moiré Metrology of Energy Landscapes in van Der Waals Heterostructures. Nat. Commun. 2021, 12, 242. [Google Scholar] [CrossRef] [PubMed]
- Shimazaki, Y.; Schwartz, I.; Watanabe, K.; Taniguchi, T.; Kroner, M.; Imamoğlu, A. Strongly Correlated Electrons and Hybrid Excitons in a Moiré Heterostructure. Nature 2020, 580, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Regan, E.C.; Yan, A.; Iqbal Bakti Utama, M.; Wang, D.; Zhao, S.; Qin, Y.; Yang, S.; Zheng, Z.; Shi, S.; et al. Observation of Moiré Excitons in WSe2/WS2 Heterostructure Superlattices. Nature 2019, 567, 76–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitzgerald, J.M.; Thompson, J.J.P.; Malic, E. Twist Angle Tuning of Moiré Exciton Polaritons in van Der Waals Heterostructures. Nano Lett. 2022, 22, 4468–4474. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.; Jacob, A.; Bourdais, S.; Sanvito, S. High-Throughput Bandstructure Simulations of van Der Waals Hetero-Bilayers Formed by 1T and 2H Monolayers. npj 2D Mater. Appl. 2021, 5, 26. [Google Scholar] [CrossRef]
- Zhao, X.; Shi, Z.; Wang, X.; Zou, H.; Fu, Y.; Zhang, L. Band Structure Engineering through van Der Waals Heterostructing Superlattices of two-dimensional Transition Metal Dichalcogenides. InfoMat 2021, 3, 201–211. [Google Scholar] [CrossRef]
- Kunstmann, J.; Mooshammer, F.; Nagler, P.; Chaves, A.; Stein, F.; Paradiso, N.; Plechinger, G.; Strunk, C.; Schüller, C.; Seifert, G.; et al. Momentum-Space Indirect Interlayer Excitons in Transition-Metal Dichalcogenide van Der Waals Heterostructures. Nat. Phys. 2018, 14, 801–805. [Google Scholar] [CrossRef] [Green Version]
- Nagler, P.; Mooshammer, F.; Kunstmann, J.; Ballottin, M.V.; Mitioglu, A.; Chernikov, A.; Chaves, A.; Stein, F.; Paradiso, N.; Meier, S.; et al. Interlayer Excitons in Transition-Metal Dichalcogenide Heterobilayers. Phys. Status Solidi 2019, 256, 1900308. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional Superconductivity in Magic-Angle Graphene Superlattices. Nature 2018, 556, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Park, J.M.; Cao, Y.; Xia, L.-Q.; Sun, S.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P. Robust Superconductivity in Magic-Angle Multilayer Graphene Family. Nat. Mater. 2022, 21, 877–883. [Google Scholar] [CrossRef]
- Aggoune, W.; Cocchi, C.; Nabok, D.; Rezouali, K.; Belkhir, M.A.; Draxl, C. Structural, Electronic, and Optical Properties of Periodic Graphene/h-BN van Der Waals Heterostructures. Phys. Rev. Mater. 2020, 4, 084001. [Google Scholar] [CrossRef]
- Abergel, D.S.L.; Wallbank, J.R.; Chen, X.; Mucha-Kruczyński, M.; Fal’ko, V.I. Infrared Absorption by Graphene–HBN Heterostructures. New J. Phys. 2013, 15, 123009. [Google Scholar] [CrossRef] [Green Version]
- Qiu, B.; Zhao, X.; Hu, G.; Yue, W.; Ren, J.; Yuan, X. Optical Properties of Graphene/MoS2 Heterostructure: First Principles Calculations. Nanomaterials 2018, 8, 962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farkous, M.; Bikerouin, M.; Phung, H.T.T.; El-Yadri, M.; Feddi, E.; Dujardin, F.; Duque, C.A.; Muoi, D.; Phuc, H.V.; Nguyen, C.V.; et al. Electronic and Optical Properties of Layered van Der Waals Heterostructure Based on MS2 (M = Mo, W) Monolayers. Mater. Res. Express 2019, 6, 065060. [Google Scholar] [CrossRef]
- Ma, Y.; Lu, S.; Dong, X.; Han, G.; Chen, Z.; Liu, Y. Optical Parameters of Graphene/MoS2 van Der Waals Heterostructure Investigated by Spectroscopic Ellipsometry. Appl. Surf. Sci. 2022, 599, 153987. [Google Scholar] [CrossRef]
- Toksumakov, A.; Ermolaev, G.; Tatmyshevskiy, M.; Klishin, Y.; Slavich, A.; Begichev, I.; Stosic, D.; Yakubovsky, D.; Kvashnin, D.; Vyshnevyy, A.; et al. Anomalous Optical Response of Graphene on Hexagonal Boron Nitride Substrates. arXiv 2022. [Google Scholar] [CrossRef]
- Hsu, C.; Frisenda, R.; Schmidt, R.; Arora, A.; Vasconcellos, S.M.; Bratschitsch, R.; Zant, H.S.J.; Castellanos-Gomez, A. Thickness-Dependent Refractive Index of 1L, 2L, and 3L MoS2, MoSe2, WS2, and WSe2. Adv. Opt. Mater. 2019, 7, 1900239. [Google Scholar] [CrossRef] [Green Version]
- Yoo, S.; Park, Q.-H. Spectroscopic Ellipsometry for Low-Dimensional Materials and Heterostructures. Nanophotonics 2022, 11, 2811–2825. [Google Scholar] [CrossRef]
- Cai, Z.; Liu, B.; Zou, X.; Cheng, H.M. Chemical Vapor Deposition Growth and Applications of Two-Dimensional Materials and Their Heterostructures. Chem. Rev. 2018, 118, 6091–6133. [Google Scholar] [CrossRef]
- Gurarslan, A.; Yu, Y.; Su, L.; Yu, Y.; Suarez, F.; Yao, S.; Zhu, Y.; Ozturk, M.; Zhang, Y.; Cao, L. Surface-Energy-Assisted Perfect Transfer of Centimeter-Scale Monolayer and Few-Layer MoS2 Films onto Arbitrary Substrates. ACS Nano 2014, 8, 11522–11528. [Google Scholar] [CrossRef]
- Herzinger, C.M.; Johs, B.; McGahan, W.A.; Woollam, J.A.; Paulson, W. Ellipsometric Determination of Optical Constants for Silicon and Thermally Grown Silicon Dioxide via a Multi-Sample, Multi-Wavelength, Multi-Angle Investigation. J. Appl. Phys. 1998, 83, 3323–3336. [Google Scholar] [CrossRef]
- El-Sayed, M.A.; Ermolaev, G.A.; Voronin, K.V.; Romanov, R.I.; Tselikov, G.I.; Yakubovsky, D.I.; Doroshina, N.V.; Nemtsov, A.B.; Solovey, V.R.; Voronov, A.A.; et al. Optical Constants of Chemical Vapor Deposited Graphene for Photonic Applications. Nanomaterials 2021, 11, 1230. [Google Scholar] [CrossRef] [PubMed]
- Segura, A.; Artús, L.; Cuscó, R.; Taniguchi, T.; Cassabois, G.; Gil, B. Natural Optical Anisotropy of H-BN: Highest Giant Birefringence in a Bulk Crystal through the Mid-Infrared to Ultraviolet Range. Phys. Rev. Mater. 2018, 2, 024001. [Google Scholar] [CrossRef] [Green Version]
- Ermolaev, G.A.; Yakubovsky, D.I.; Stebunov, Y.V.; Arsenin, A.V.; Volkov, V.S. Spectral Ellipsometry of Monolayer Transition Metal Dichalcogenides: Analysis of Excitonic Peaks in Dispersion. J. Vac. Sci. Technol. B 2020, 38, 014002. [Google Scholar] [CrossRef]
- Ermolaev, G.A.; Stebunov, Y.V.; Vyshnevyy, A.A.; Tatarkin, D.E.; Yakubovsky, D.I.; Novikov, S.M.; Baranov, D.G.; Shegai, T.; Nikitin, A.Y.; Arsenin, A.V.; et al. Broadband Optical Properties of Monolayer and Bulk MoS2. npj 2D Mater. Appl. 2020, 4, 21. [Google Scholar] [CrossRef]
- Niu, Y.; Gonzalez-Abad, S.; Frisenda, R.; Marauhn, P.; Drüppel, M.; Gant, P.; Schmidt, R.; Taghavi, N.; Barcons, D.; Molina-Mendoza, A.; et al. Thickness-Dependent Differential Reflectance Spectra of Monolayer and Few-Layer MoS2, MoSe2, WS2 and WSe2. Nanomaterials 2018, 8, 725. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Li, B.; Chen, X.; Ruta, F.L.; Shao, Y.; Sternbach, A.J.; McLeod, A.S.; Sun, Z.; Xiong, L.; Moore, S.L.; et al. Nano-Spectroscopy of Excitons in Atomically Thin Transition Metal Dichalcogenides. Nat. Commun. 2022, 13, 542. [Google Scholar] [CrossRef]
- Castellanos-Gomez, A.; Duan, X.; Fei, Z.; Gutierrez, H.R.; Huang, Y.; Huang, X.; Quereda, J.; Qian, Q.; Sutter, E.; Sutter, P. Van Der Waals Heterostructures. Nat. Rev. Methods Prim. 2022, 2, 58. [Google Scholar] [CrossRef]
- Ermolaev, G.; Voronin, K.; Baranov, D.G.; Kravets, V.; Tselikov, G.; Stebunov, Y.; Yakubovsky, D.; Novikov, S.; Vyshnevyy, A.; Mazitov, A.; et al. Topological Phase Singularities in Atomically Thin High-Refractive-Index Materials. Nat. Commun. 2022, 13, 2049. [Google Scholar] [CrossRef]
- Ermolaev, G.A.; Voronin, K.V.; Tatmyshevskiy, M.K.; Mazitov, A.B.; Slavich, A.S.; Yakubovsky, D.I.; Tselin, A.P.; Mironov, M.S.; Romanov, R.I.; Markeev, A.M.; et al. Broadband Optical Properties of Atomically Thin PtS2 and PtSe2. Nanomaterials 2021, 11, 3269. [Google Scholar] [CrossRef]
- Ermolaev, G.A.; Yakubovsky, D.I.; El-Sayed, M.A.; Tatmyshevskiy, M.K.; Mazitov, A.B.; Popkova, A.A.; Antropov, I.M.; Bessonov, V.O.; Slavich, A.S.; Tselikov, G.I.; et al. Broadband Optical Constants and Nonlinear Properties of SnS2 and SnSe2. Nanomaterials 2021, 12, 141. [Google Scholar] [CrossRef] [PubMed]
- Cong, X.; Liu, X.-L.; Lin, M.-L.; Tan, P.-H. Application of Raman Spectroscopy to Probe Fundamental Properties of Two-Dimensional Materials. npj 2D Mater. Appl. 2020, 4, 13. [Google Scholar] [CrossRef]
- Paillet, M.; Parret, R.; Sauvajol, J.-L.; Colomban, P. Graphene and Related 2D Materials: An Overview of the Raman Studies. J. Raman Spectrosc. 2018, 49, 8–12. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Yu, Y.; Cai, Y.; Li, W.; Gurarslan, A.; Peelaers, H.; Aspnes, D.E.; Van de Walle, C.G.; Nguyen, N.V.; Zhang, Y.-W.; et al. Exciton-Dominated Dielectric Function of Atomically Thin MoS2 Films. Sci. Rep. 2015, 5, 16996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kravets, V.G.; Wu, F.; Auton, G.H.; Yu, T.; Imaizumi, S.; Grigorenko, A.N. Measurements of Electrically Tunable Refractive Index of MoS2 Monolayer and Its Usage in Optical Modulators. npj 2D Mater. Appl. 2019, 3, 36. [Google Scholar] [CrossRef] [Green Version]
- Rösner, M.; Steinke, C.; Lorke, M.; Gies, C.; Jahnke, F.; Wehling, T.O. Two-Dimensional Heterojunctions from Nonlocal Manipulations of the Interactions. Nano Lett. 2016, 16, 2322–2327. [Google Scholar] [CrossRef]
- Raja, A.; Chaves, A.; Yu, J.; Arefe, G.; Hill, H.M.; Rigosi, A.F.; Berkelbach, T.C.; Nagler, P.; Schüller, C.; Korn, T.; et al. Coulomb Engineering of the Bandgap and Excitons in Two-Dimensional Materials. Nat. Commun. 2017, 8, 15251. [Google Scholar] [CrossRef] [Green Version]
- Raja, A.; Waldecker, L.; Zipfel, J.; Cho, Y.; Brem, S.; Ziegler, J.D.; Kulig, M.; Taniguchi, T.; Watanabe, K.; Malic, E.; et al. Dielectric Disorder in Two-Dimensional Materials. Nat. Nanotechnol. 2019, 14, 832–837. [Google Scholar] [CrossRef] [Green Version]
- De Luna Bugallo, A.; Rocha-Robledo, A.K.; Flores-Salazar, M.; Muñiz-Martinez, B.A.; Cerda-Méndez, E.A.; Del Pozo-Zamudio, O.; Jiménez-Sandoval, S.; Rosales-Torres, Á.A.; Lara-Alfaro, H.F. Interlayer Charge Transfer in Supported and Suspended MoS2/Graphene/MoS2 Vertical Heterostructures. SSRN Electron. J. 2022. [Google Scholar] [CrossRef]
- Feierabend, M.; Berghäuser, G.; Knorr, A.; Malic, E. Proposal for Dark Exciton Based Chemical Sensors. Nat. Commun. 2017, 8, 14776. [Google Scholar] [CrossRef]
- Passler, N.C.; Paarmann, A. Generalized 4 × 4 Matrix Formalism for Light Propagation in Anisotropic Stratified Media: Study of Surface Phonon Polaritons in Polar Dielectric Heterostructures. J. Opt. Soc. Am. B 2017, 34, 2128. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Mathews, N.; Sum, T.-C. Plasmonic Organic Solar Cells; Springer: Singapore, 2017; ISBN 978-981-10-2021-6. [Google Scholar]
- Stebunov, Y.V.; Aftenieva, O.A.; Arsenin, A.V.; Volkov, V.S. Highly Sensitive and Selective Sensor Chips with Graphene-Oxide Linking Layer. ACS Appl. Mater. Interfaces 2015, 7, 21727–21734. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Xu, Z.-Q.; Cao, G.; Zhang, Y.; Zhou, J.; Wang, Z.; Wan, Z.; Liu, Z.; Loh, K.P.; Qiu, C.-W.; et al. Diffraction-Limited Imaging with Monolayer 2D Material-Based Ultrathin Flat Lenses. Light Sci. Appl. 2020, 9, 137. [Google Scholar] [CrossRef] [PubMed]
- Xia, F.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-Dimensional Material Nanophotonics. Nat. Photonics 2014, 8, 899–907. [Google Scholar] [CrossRef] [Green Version]
- Ermolaev, G.; Grudinin, D.; Voronin, K.; Vyshnevyy, A.; Arsenin, A.; Volkov, V. Van Der Waals Materials for Subdiffractional Light Guidance. Photonics 2022, 9, 744. [Google Scholar] [CrossRef]
- Bandurin, D.A.; Mönch, E.; Kapralov, K.; Phinney, I.Y.; Lindner, K.; Liu, S.; Edgar, J.H.; Dmitriev, I.A.; Jarillo-Herrero, P.; Svintsov, D.; et al. Cyclotron Resonance Overtones and Near-Field Magnetoabsorption via Terahertz Bernstein Modes in Graphene. Nat. Phys. 2022, 18, 462–467. [Google Scholar] [CrossRef]
- Asgari, M.; Riccardi, E.; Balci, O.; De Fazio, D.; Shinde, S.M.; Zhang, J.; Mignuzzi, S.; Koppens, F.H.L.; Ferrari, A.C.; Viti, L.; et al. Chip-Scalable, Room-Temperature, Zero-Bias, Graphene-Based Terahertz Detectors with Nanosecond Response Time. ACS Nano 2021, 15, 17966–17976. [Google Scholar] [CrossRef]
- Quereda, J.; Kuriakose, S.; Munuera, C.; Mompean, F.J.; Al-Enizi, A.M.; Nafady, A.; Diez, E.; Frisenda, R.; Castellanos-Gomez, A. Scalable and Low-Cost Fabrication of Flexible WS2 Photodetectors on Polycarbonate. npj Flex. Electron. 2022, 6, 23. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Sayed, M.A.; Tselin, A.P.; Ermolaev, G.A.; Tatmyshevskiy, M.K.; Slavich, A.S.; Yakubovsky, D.I.; Novikov, S.M.; Vyshnevyy, A.A.; Arsenin, A.V.; Volkov, V.S. Non-Additive Optical Response in Transition Metal Dichalcogenides Heterostructures. Nanomaterials 2022, 12, 4436. https://doi.org/10.3390/nano12244436
El-Sayed MA, Tselin AP, Ermolaev GA, Tatmyshevskiy MK, Slavich AS, Yakubovsky DI, Novikov SM, Vyshnevyy AA, Arsenin AV, Volkov VS. Non-Additive Optical Response in Transition Metal Dichalcogenides Heterostructures. Nanomaterials. 2022; 12(24):4436. https://doi.org/10.3390/nano12244436
Chicago/Turabian StyleEl-Sayed, Marwa A., Andrey P. Tselin, Georgy A. Ermolaev, Mikhail K. Tatmyshevskiy, Aleksandr S. Slavich, Dmitry I. Yakubovsky, Sergey M. Novikov, Andrey A. Vyshnevyy, Aleksey V. Arsenin, and Valentyn S. Volkov. 2022. "Non-Additive Optical Response in Transition Metal Dichalcogenides Heterostructures" Nanomaterials 12, no. 24: 4436. https://doi.org/10.3390/nano12244436
APA StyleEl-Sayed, M. A., Tselin, A. P., Ermolaev, G. A., Tatmyshevskiy, M. K., Slavich, A. S., Yakubovsky, D. I., Novikov, S. M., Vyshnevyy, A. A., Arsenin, A. V., & Volkov, V. S. (2022). Non-Additive Optical Response in Transition Metal Dichalcogenides Heterostructures. Nanomaterials, 12(24), 4436. https://doi.org/10.3390/nano12244436