Electrostatic and Environmental Control of the Trion Fine Structure in Transition Metal Dichalcogenide Monolayers
Abstract
:1. Introduction
2. Materials and Methods: Three-Particle States in TMDC Monolayers
3. Results
4. Discussion
4.1. Symmetry and Internal Structure of Trions
4.2. Manipulating the Lowest Trion States
4.3. The Role of Spin-Orbit and Exchange Interactions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ML | monolayers |
TMDC | transitional metal dichalcogenides |
2D | two-dimensional |
DFT | density functional theory |
GW | GW approximation |
Appendix A. Computational Details: Single-Particle States
Appendix B. Trion States
Appendix C. Trion szτ = ±3/2 States
References
- Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010, 105, 136805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.Y.; Galli, G.; Wang, F. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 2010, 10, 1271–1275. [Google Scholar] [CrossRef] [PubMed]
- Komsa, H.P.; Krasheninnikov, A.V. Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles. Phys. Rev. B 2012, 86, 241201. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Qian, X.; Huang, C.W.; Li, J. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photonics 2012, 6, 866–872. [Google Scholar] [CrossRef]
- Qiu, D.Y.; da Jornada, F.H.; Louie, S.G. Optical Spectrum of MoS2: Many-Body Effects and Diversity of Exciton States. Phys. Rev. Lett. 2013, 111, 216805. [Google Scholar] [CrossRef] [Green Version]
- Amara, I.B.; Salem, E.B.; Jaziri, S. Optoelectronic response and excitonic properties of monolayer MoS2. J. Appl. Phys. 2016, 120, 051707. [Google Scholar] [CrossRef]
- Muth, J.F.; Lee, J.H.; Shmagin, I.K.; Kolbas, R.M.; Casey, H.C.; Keller, B.P.; Mishra, U.K.; DenBaars, S.P. Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements. Appl. Phys. Lett. 1997, 71, 2572–2574. [Google Scholar] [CrossRef]
- Yu, P.Y.; Cardona, M. Fundamentals of Semiconductors; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Dvorak, M.; Wei, S.H.; Wu, Z. Origin of the Variation of Exciton Binding Energy in Semiconductors. Phys. Rev. Lett. 2013, 110, 016402. [Google Scholar] [CrossRef] [Green Version]
- Mak, K.F.; He, K.; Lee, C.; Lee, G.H.; Hone, J.; Heinz, T.F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2012, 12, 207–211. [Google Scholar] [CrossRef]
- Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable Photoluminescence of Monolayer MoS2 via Chemical Doping. Nano Lett. 2013, 13, 5944–5948. [Google Scholar] [CrossRef] [Green Version]
- Ross, J.S.; Klement, P.; Jones, A.M.; Ghimire, N.J.; Yan, J.; Mandrus, D.G.; Taniguchi, T.; Watanabe, K.; Kitamura, K.; Yao, W.; et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat. Nanotechnol. 2014, 9, 268–272. [Google Scholar] [CrossRef] [PubMed]
- Lui, C.; Frenzel, A.; Pilon, D.; Lee, Y.H.; Ling, X.; Akselrod, G.; Kong, J.; Gedik, N. Trion-Induced Negative Photoconductivity in Monolayer MoS2. Phys. Rev. Lett. 2014, 113, 166801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Wang, H.; Chan, W.; Manolatou, C.; Rana, F. Absorption of light by excitons and trions in monolayers of metal dichalcogenide MoS2: Experiments and theory. Phys. Rev. B 2014, 89, 205436. [Google Scholar] [CrossRef] [Green Version]
- Scheuschner, N.; Ochedowski, O.; Kaulitz, A.M.; Gillen, R.; Schleberger, M.; Maultzsch, J. Photoluminescence of freestanding single- and few-layer MoS2. Phys. Rev. B 2014, 89, 125406. [Google Scholar] [CrossRef] [Green Version]
- Soklaski, R.; Liang, Y.; Yang, L. Temperature effect on optical spectra of monolayer molybdenum disulfide. Appl. Phys. Lett. 2014, 104, 193110. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, H.; Wang, H.; Liu, R.; Zhang, S.L.; Qiu, Z.J. On Valence-Band Splitting in Layered MoS2. ACS Nano 2015, 9, 8514–8519. [Google Scholar] [CrossRef]
- Rezk, A.R.; Carey, B.; Chrimes, A.F.; Lau, D.W.M.; Gibson, B.C.; Zheng, C.; Fuhrer, M.S.; Yeo, L.Y.; Kalantar-zadeh, K. Acoustically-Driven Trion and Exciton Modulation in Piezoelectric Two-Dimensional MoS2. Nano Lett. 2016, 16, 849–855. [Google Scholar] [CrossRef]
- Singh, A.; Moody, G.; Tran, K.; Scott, M.E.; Overbeck, V.; Berghäuser, G.; Schaibley, J.; Seifert, E.J.; Pleskot, D.; Gabor, N.M.; et al. Trion formation dynamics in monolayer transition metal dichalcogenides. Phys. Rev. B 2016, 93, 041401. [Google Scholar] [CrossRef] [Green Version]
- You, Y.; Zhang, X.X.; Berkelbach, T.C.; Hybertsen, M.S.; Reichman, D.R.; Heinz, T.F. Observation of biexcitons in monolayer WSe2. Nat. Phys. 2015, 11, 477–481. [Google Scholar] [CrossRef]
- Sie, E.J.; Frenzel, A.J.; Lee, Y.H.; Kong, J.; Gedik, N. Intervalley biexcitons and many-body effects in monolayer MoS2. Phys. Rev. B 2015, 92, 125417. [Google Scholar] [CrossRef] [Green Version]
- Plechinger, G.; Nagler, P.; Kraus, J.; Paradiso, N.; Strunk, C.; Schüller, C.; Korn, T. Identification of excitons, trions and biexcitons in single-layer WS2. Phys. Status Solidi 2015, 9, 457–461. [Google Scholar] [CrossRef] [Green Version]
- Hao, K.; Specht, J.F.; Nagler, P.; Xu, L.; Tran, K.; Singh, A.; Dass, C.K.; Schüller, C.; Korn, T.; Richter, M.; et al. Neutral and charged inter-valley biexcitons in monolayer MoSe2. Nat. Commun. 2017, 8, 15552. [Google Scholar] [CrossRef] [PubMed]
- Paradisanos, I.; Germanis, S.; Pelekanos, N.T.; Fotakis, C.; Kymakis, E.; Kioseoglou, G.; Stratakis, E. Room temperature observation of biexcitons in exfoliated WS2 monolayers. Appl. Phys. Lett. 2017, 110, 193102. [Google Scholar] [CrossRef] [Green Version]
- Ye, Z.; Waldecker, L.; Ma, E.Y.; Rhodes, D.; Antony, A.; Kim, B.; Zhang, X.X.; Deng, M.; Jiang, Y.; Lu, Z.; et al. Efficient generation of neutral and charged biexcitons in encapsulated WSe2 monolayers. Nat. Commun. 2018, 9, 3718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torche, A.; Bester, G. Biexcitons fine structure and non-equilibrium effects in transition metal dichalcogenides monolayers from first principles. Commun. Phys. 2021, 4, 67. [Google Scholar] [CrossRef]
- Gmitra, M.; Fabian, J. Proximity Effects in Bilayer Graphene on Monolayer WSe2: Field-Effect Spin Valley Locking, Spin-Orbit Valve, and Spin Transistor. Phys. Rev. Lett. 2017, 119, 146401. [Google Scholar] [CrossRef] [Green Version]
- Ciccarino, C.J.; Christensen, T.; Sundararaman, R.; Narang, P. Dynamics and Spin-Valley Locking Effects in Monolayer Transition Metal Dichalcogenides. Nano Lett. 2018, 18, 5709–5715. [Google Scholar] [CrossRef] [Green Version]
- Tao, L.L.; Tsymbal, E.Y. Two-dimensional spin-valley locking spin valve. Phys. Rev. B 2019, 100, 161110(R). [Google Scholar] [CrossRef]
- Wang, Y.; Deng, L.; Wei, Q.; Wan, Y.; Liu, Z.; Lu, X.; Li, Y.; Bi, L.; Zhang, L.; Lu, H.; et al. Spin-Valley Locking Effect in Defect States of Monolayer MoS2. Nano Lett. 2020, 20, 2129–2136. [Google Scholar] [CrossRef]
- Ganchev, B.; Drummond, N.; Aleiner, I.; Fal’ko, V. Three-Particle Complexes in Two-Dimensional Semiconductors. Phys. Rev. Lett. 2015, 114, 107401. [Google Scholar] [CrossRef] [Green Version]
- Plechinger, G.; Nagler, P.; Arora, A.; Schmidt, R.; Chernikov, A.; del Águila, A.G.; Christianen, P.C.; Bratschitsch, R.; Schüller, C.; Korn, T. Trion fine structure and coupled spin–valley dynamics in monolayer tungsten disulfide. Nat. Commun. 2016, 7, 12715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Efimkin, D.K.; MacDonald, A.H. Many-body theory of trion absorption features in two-dimensional semiconductors. Phys. Rev. B 2017, 95, 035417. [Google Scholar] [CrossRef] [Green Version]
- Mostaani, E.; Szyniszewski, M.; Price, C.H.; Maezono, R.; Danovich, M.; Hunt, R.J.; Drummond, N.D.; Fal’ko, V.I. Diffusion quantum Monte Carlo study of excitonic complexes in two-dimensional transition-metal dichalcogenides. Phys. Rev. B 2017, 96, 075431. [Google Scholar] [CrossRef] [Green Version]
- Courtade, E.; Semina, M.; Manca, M.; Glazov, M.M.; Robert, C.; Cadiz, F.; Wang, G.; Taniguchi, T.; Watanabe, K.; Pierre, M.; et al. Charged excitons in monolayer WSe2: Experiment and theory. Phys. Rev. B 2017, 96, 085302. [Google Scholar] [CrossRef] [Green Version]
- Drüppel, M.; Deilmann, T.; Krüger, P.; Rohlfing, M. Diversity of trion states and substrate effects in the optical properties of an MoS2 monolayer. Nat. Commun. 2017, 8, 2117. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Chernikov, A.; Glazov, M.M.; Heinz, T.F.; Marie, X.; Amand, T.; Urbaszek, B. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 2018, 90, 021001. [Google Scholar] [CrossRef] [Green Version]
- Arora, A.; Deilmann, T.; Reichenauer, T.; Kern, J.; Michaelis de Vasconcellos, S.; Rohlfing, M.; Bratschitsch, R. Excited-State Trions in Monolayer WS2. Phys. Rev. Lett. 2019, 123, 167401. [Google Scholar] [CrossRef]
- Torche, A.; Bester, G. First-principles many-body theory for charged and neutral excitations: Trion fine structure splitting in transition metal dichalcogenides. Phys. Rev. B 2019, 100, 201403. [Google Scholar] [CrossRef]
- Zhumagulov, Y.V.; Vagov, A.; Gulevich, D.R.; Junior, P.E.F.; Perebeinos, V. Trion induced photoluminescence of a doped MoS2 monolayer. J. Chem. Phys. 2020, 153, 044132. [Google Scholar] [CrossRef]
- Hichri, A.; Jaziri, S. Trion fine structure and anomalous Hall effect in monolayer transition metal dichalcogenides. Phys. Rev. B 2020, 102, 085407. [Google Scholar] [CrossRef]
- Grzeszczyk, M.; Olkowska-Pucko, K.; Nogajewski, K.; Watanabe, K.; Taniguchi, T.; Kossacki, P.; Babiński, A.; Molas, M.R. Exposing the trion’s fine structure by controlling the carrier concentration in hBN-encapsulated MoS2. Nanoscale 2021, 13, 18726–18733. [Google Scholar] [CrossRef] [PubMed]
- Jadczak, J.; Kutrowska-Girzycka, J.; Bieniek, M.; Kazimierczuk, T.; Kossacki, P.; Schindler, J.J.; Debus, J.; Watanabe, K.; Taniguchi, T.; Ho, C.H.; et al. Probing negatively charged and neutral excitons in MoS2/hBN and hBN/MoS2/hBN van der Waals heterostructures. Nanotechnology 2021, 32, 145717. [Google Scholar] [CrossRef] [PubMed]
- Zinkiewicz, M.; Woźniak, T.; Kazimierczuk, T.; Kapuscinski, P.; Oreszczuk, K.; Grzeszczyk, M.; Bartoš, M.; Nogajewski, K.; Watanabe, K.; Taniguchi, T.; et al. Excitonic Complexes in n-Doped WS2 Monolayer. Nano Lett. 2021, 21, 2519–2525. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.W.; Chang, Y.C. Variationally optimized orbital approach to trions in two-dimensional materials. J. Chem. Phys. 2021, 155, 024110. [Google Scholar] [CrossRef] [PubMed]
- Hamby, D.W.; Lucca, D.A.; Klopfstein, M.J.; Cantwell, G. Temperature dependent exciton photoluminescence of bulk ZnO. J. Appl. Phys. 2003, 93, 3214–3217. [Google Scholar] [CrossRef]
- Amori, A.R.; Rossi, J.E.; Landi, B.J.; Krauss, T.D. Defects Enable Dark Exciton Photoluminescence in Single-Walled Carbon Nanotubes. J. Phys. Chem. C 2018, 122, 3599–3607. [Google Scholar] [CrossRef]
- Golovynskyi, S.; Bosi, M.; Seravalli, L.; Li, B. MoS2 two-dimensional quantum dots with weak lateral quantum confinement: Intense exciton and trion photoluminescence. Surfaces Interfaces 2021, 23, 100909. [Google Scholar] [CrossRef]
- Deilmann, T.; Thygesen, K.S. Dark excitations in monolayer transition metal dichalcogenides. Phys. Rev. B 2017, 96, 201113. [Google Scholar] [CrossRef] [Green Version]
- Arora, A.; Wessling, N.K.; Deilmann, T.; Reichenauer, T.; Steeger, P.; Kossacki, P.; Potemski, M.; de Vasconcellos, S.M.; Rohlfing, M.; Bratschitsch, R. Dark trions govern the temperature-dependent optical absorption and emission of doped atomically thin semiconductors. Phys. Rev. B 2020, 101, 241413(R). [Google Scholar] [CrossRef]
- Berkelbach, T.C.; Hybertsen, M.S.; Reichman, D.R. Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys. Rev. B 2013, 88, 045318. [Google Scholar] [CrossRef] [Green Version]
- Rytova, N.S. The screened potential of a point charge in a thin film. Mosc. Univ. Phys. Bull. 1967, 3, 18. [Google Scholar]
- Keldysh, L.V. Coulomb interaction in thin semiconductor and semimetal films. Sov. J. Exp. Theor. Phys. Lett. 1979, 29, 658. [Google Scholar]
- Cudazzo, P.; Tokatly, I.V.; Rubio, A. Dielectric screening in two-dimensional insulators: Implications for excitonic and impurity states in graphane. Phys. Rev. B 2011, 84, 085406. [Google Scholar] [CrossRef] [Green Version]
- Florian, M.; Hartmann, M.; Steinhoff, A.; Klein, J.; Holleitner, A.W.; Finley, J.J.; Wehling, T.O.; Kaniber, M.; Gies, C. The Dielectric Impact of Layer Distances on Exciton and Trion Binding Energies in van der Waals Heterostructures. Nano Lett. 2018, 18, 2725–2732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, Y.; Berkelbach, T.C. Environmentally sensitive theory of electronic and optical transitions in atomically thin semiconductors. Phys. Rev. B 2018, 97, 041409(R). [Google Scholar] [CrossRef] [Green Version]
- Zhumagulov, Y.V.; Vagov, A.; Senkevich, N.Y.; Gulevich, D.R.; Perebeinos, V. Three-particle states and brightening of intervalley excitons in a doped MoS2 monolayer. Phys. Rev. B 2020, 101, 245433. [Google Scholar] [CrossRef]
- Xiao, D.; Liu, G.B.; Feng, W.; Xu, X.; Yao, W. Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802. [Google Scholar] [CrossRef] [Green Version]
- Kormányos, A.; Burkard, G.; Gmitra, M.; Fabian, J.; Zólyomi, V.; Drummond, N.D.; Fal’ko, V. kptheory for two-dimensional transition metal dichalcogenide semiconductors. 2D Mater. 2015, 2, 022001. [Google Scholar] [CrossRef]
- Zhang, C.; Gong, C.; Nie, Y.; Min, K.A.; Liang, C.; Oh, Y.J.; Zhang, H.; Wang, W.; Hong, S.; Colombo, L.; et al. Systematic study of electronic structure and band alignment of monolayer transition metal dichalcogenides in Van der Waals heterostructures. 2D Mater. 2016, 4, 015026. [Google Scholar] [CrossRef]
- Zollner, K.; Junior, P.E.F.; Fabian, J. Strain-tunable orbital, spin-orbit, and optical properties of monolayer transition-metal dichalcogenides. Phys. Rev. B 2019, 100, 195126. [Google Scholar] [CrossRef] [Green Version]
- Waldecker, L.; Raja, A.; Rösner, M.; Steinke, C.; Bostwick, A.; Koch, R.J.; Jozwiak, C.; Taniguchi, T.; Watanabe, K.; Rotenberg, E.; et al. Rigid Band Shifts in Two-Dimensional Semiconductors through External Dielectric Screening. Phys. Rev. Lett. 2019, 123, 206403. [Google Scholar] [CrossRef] [PubMed]
- Tempelaar, R.; Berkelbach, T.C. Many-body simulation of two-dimensional electronic spectroscopy of excitons and trions in monolayer transition metal dichalcogenides. Nat. Commun. 2019, 10, 3419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laturia, A.; de Put, M.L.V.; Vandenberghe, W.G. Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: From monolayer to bulk. NPJ 2D Mater. Appl. 2018, 2, 6. [Google Scholar] [CrossRef] [Green Version]
- Klein, J.; Hötger, A.; Florian, M.; Steinhoff, A.; Delhomme, A.; Taniguchi, T.; Watanabe, K.; Jahnke, F.; Holleitner, A.W.; Potemski, M.; et al. Controlling exciton many-body states by the electric-field effect in monolayer MoS2. Phys. Rev. Res. 2021, 3, L022009. [Google Scholar] [CrossRef]
- Danovich, M.; Zólyomi, V.; Fal’ko, V.I. Dark trions and biexcitons in WS2 and WSe2 made bright by e-e scattering. Sci. Rep. 2017, 7, 45998. [Google Scholar] [CrossRef] [Green Version]
- Vaclavkova, D.; Wyzula, J.; Nogajewski, K.; Bartos, M.; Slobodeniuk, A.O.; Faugeras, C.; Potemski, M.; Molas, M.R. Singlet and triplet trions in WS2 monolayer encapsulated in hexagonal boron nitride. Nanotechnology 2018, 29, 325705. [Google Scholar] [CrossRef] [Green Version]
- Zipfel, J.; Wagner, K.; Ziegler, J.D.; Taniguchi, T.; Watanabe, K.; Semina, M.A.; Chernikov, A. Light–matter coupling and non-equilibrium dynamics of exchange-split trions in monolayer WS2. J. Chem. Phys. 2020, 153, 034706. [Google Scholar] [CrossRef]
- Plechinger, G.; Nagler, P.; Arora, A.; del Águila, A.G.; Ballottin, M.V.; Frank, T.; Steinleitner, P.; Gmitra, M.; Fabian, J.; Christianen, P.C.M.; et al. Excitonic Valley Effects in Monolayer WS2 under High Magnetic Fields. Nano Lett. 2016, 16, 7899–7904. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.; Cruz, J.M.R.; Qu, F. Valley dynamics of different trion species in monolayer WSe2. Appl. Phys. Lett. 2019, 115, 082101. [Google Scholar] [CrossRef]
- Glazov, M.M.; Amand, T.; Marie, X.; Lagarde, D.; Bouet, L.; Urbaszek, B. Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides. Phys. Rev. B 2014, 89, 201302. [Google Scholar] [CrossRef] [Green Version]
- Selig, M.; Katsch, F.; Schmidt, R.; Michaelis de Vasconcellos, S.; Bratschitsch, R.; Malic, E.; Knorr, A. Ultrafast dynamics in monolayer transition metal dichalcogenides: Interplay of dark excitons, phonons, and intervalley exchange. Phys. Rev. Res. 2019, 1, 022007. [Google Scholar] [CrossRef]
- Qiu, D.Y.; Cao, T.; Louie, S.G. Nonanalyticity, Valley Quantum Phases, and Lightlike Exciton Dispersion in Monolayer Transition Metal Dichalcogenides: Theory and First-Principles Calculations. Phys. Rev. Lett. 2015, 115, 176801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deilmann, T.; Drüppel, M.; Rohlfing, M. Three-particle correlation from a Many-Body Perspective: Trions in a Carbon Nanotube. Phys. Rev. Lett. 2016, 116, 196804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rohlfing, M.; Louie, S.G. Electron-hole excitations and optical spectra from first principles. Phys. Rev. B 2000, 62, 4927–4944. [Google Scholar] [CrossRef]
- Yu, H.; Liu, G.B.; Gong, P.; Xu, X.; Yao, W. Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides. Nat. Commun. 2014, 5, 3876. [Google Scholar] [CrossRef] [Green Version]
- Mayers, M.Z.; Berkelbach, T.C.; Hybertsen, M.S.; Reichman, D.R. Binding energies and spatial structures of small carrier complexes in monolayer transition-metal dichalcogenides via diffusion Monte Carlo. Phys. Rev. B 2015, 92, 161404. [Google Scholar] [CrossRef]
a [Å] | d [Å] | [eV] | [meV] | [meV] | |||
---|---|---|---|---|---|---|---|
MoS2 | 3.185 | 6.12 | 16.3 | 2.087 | 0.520 | −1.41 | 74.60 |
MoSe2 | 3.319 | 6.54 | 17.9 | 1.817 | 0.608 | −10.45 | 93.25 |
WS2 | 3.180 | 6.14 | 14.6 | 2.250 | 0.351 | 15.72 | 213.46 |
WSe2 | 3.319 | 6.52 | 16.0 | 1.979 | 0.379 | 19.85 | 233.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhumagulov, Y.V.; Vagov, A.; Gulevich, D.R.; Perebeinos, V. Electrostatic and Environmental Control of the Trion Fine Structure in Transition Metal Dichalcogenide Monolayers. Nanomaterials 2022, 12, 3728. https://doi.org/10.3390/nano12213728
Zhumagulov YV, Vagov A, Gulevich DR, Perebeinos V. Electrostatic and Environmental Control of the Trion Fine Structure in Transition Metal Dichalcogenide Monolayers. Nanomaterials. 2022; 12(21):3728. https://doi.org/10.3390/nano12213728
Chicago/Turabian StyleZhumagulov, Yaroslav V., Alexei Vagov, Dmitry R. Gulevich, and Vasili Perebeinos. 2022. "Electrostatic and Environmental Control of the Trion Fine Structure in Transition Metal Dichalcogenide Monolayers" Nanomaterials 12, no. 21: 3728. https://doi.org/10.3390/nano12213728
APA StyleZhumagulov, Y. V., Vagov, A., Gulevich, D. R., & Perebeinos, V. (2022). Electrostatic and Environmental Control of the Trion Fine Structure in Transition Metal Dichalcogenide Monolayers. Nanomaterials, 12(21), 3728. https://doi.org/10.3390/nano12213728