Optical Conductivity as a Probe of the Interaction-Driven Metal in Rhombohedral Trilayer Graphene
Abstract
:1. Introduction
2. Model
3. Optical Conductivity
4. Valence-Bond Order
5. Bond-Current Order
6. Charge Density Wave
7. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, Y.; Fatemi, V.; Demir, A.; Fang, S.; Tomarken, S.L.; Luo, J.Y.; Sanchez-Yamagishi, J.D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; et al. Correlated insulator behaviour at half-lling in magic-angle graphene superlattices. Nature 2018, 556, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, X.; Stepanov, P.; Yang, W.; Xie, M.; Aamir, M.A.; Das, I.; Urgell, C.; Watanabe, K.; Taniguchi, T.; Zhang, G.; et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 2019, 574, 653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.; Lai, X.; Watanabe, K.; Taniguchi, T.; Haule, K.; Mao, J.; Andrei, E.Y. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature 2019, 573, 91. [Google Scholar] [CrossRef] [Green Version]
- Yankowitz, M.; Chen, S.; Polshyn, H.; Zhang, Y.; Watanabe, K.; Taniguchi, T.; Graf, D.; Young, A.F.; Dean, C.R. Tuning superconductivity in twisted bilayer graphene. Science 2019, 363, 1059. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Sharpe, A.L.; Gallagher, P.; Rosen, I.T.; Fox, E.J.; Jiang, L.; Lyu, B.; Li, H.; Watanabe, K.; Taniguchi, T.; et al. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature 2019, 572, 215. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Hao, Z.; Khalaf, E.; Lee, J.Y.; Ronen, Y.; Yoo, H.; Haei Najafabadi, D.; Watanabe, K.; Taniguchi, T.; Vishwanath, A.; et al. Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature 2020, 583, 221. [Google Scholar] [CrossRef]
- Serlin, M.; Tschirhart, C.; Polshyn, H.; Zhang, Y.; Zhu, J.; Watanabe, K.; Taniguchi, T.; Balents, L.; Young, A. Intrinsic quantized anomalous hall effect in a moiré heterostructure. Science 2020, 367, 900. [Google Scholar] [CrossRef] [Green Version]
- Park, J.M.; Cao, Y.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature 2021, 590, 249. [Google Scholar] [CrossRef]
- Rubio-Verdú, C.; Turkel, S.; Song, Y.; Klebl, L.; Samajdar, R.; Scheurer, M.S.; Venderbos, J.W.; Watanabe, K.; Taniguchi, T.; Ochoa, H.; et al. Moire nematic phase in twisted double bilayer graphene. Nat. Phys. 2022, 18, 196. [Google Scholar] [CrossRef]
- Zhou, H.; Xie, T.; Ghazaryan, A.; Holder, T.; Ehrets, J.R.; Spanton, E.M.; Taniguchi, T.; Watanabe, K.; Berg, E.; Serbyn, M.; et al. Half- and quarter-metals in rhombohedral trilayer graphene. Nature 2021, 598, 429. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Xie, T.; Taniguchi, T.; Watanabe, K.; Young, A.F. Superconductivity in rhombohedral trilayer graphene. Nature 2021, 598, 434. [Google Scholar] [CrossRef] [PubMed]
- Törmä, P.; Peotta, S.; Bernevig, B.A. Superconductivity, superuidity and quantum geometry in twisted multilayer systems. Nat. Rev. Phys. 2022, 4, 528. [Google Scholar] [CrossRef]
- Chou, Y.-Z.; Wu, F.; Sau, J.D.; Das Sarma, S. Acoustic-phonon-mediated superconductivity in rhombohedral trilayer graphene. Phys. Rev. Lett. 2021, 127, 187001. [Google Scholar] [CrossRef]
- Ghazaryan, A.; Holder, T.; Serbyn, M.; Berg, E. Unconventional superconductivity in systems with annular fermi surfaces: Application to rhombohedral trilayer graphene. Phys. Rev. Lett. 2021, 127, 247001. [Google Scholar] [CrossRef]
- Szabó, A.L.; Roy, B. Metals, fractional metals, and superconductivity in rhombohedral trilayer graphene. Phys. Rev. B 2022, 105, L081407. [Google Scholar] [CrossRef]
- Cea, T.; Pantaleón, P.A.; Phong, V.T.; Guinea, F. Superconductivity from repulsive interactions in rhombohedral trilayer graphene: A kohn-luttinger-like mechanism. Phys. Rev. B 2022, 105, 075432. [Google Scholar] [CrossRef]
- Dai, H.; Hou, J.; Zhang, X.; Liang, Y.; Ma, T. Mott insulating state and d + id superconductivity in an abc graphene trilayer. Phys. Rev. B 2021, 104, 035104. [Google Scholar] [CrossRef]
- You, Y.-Z.; Vishwanath, A. Kohn-luttinger superconductivity and intervalley coherence in rhombohedral trilayer graphene. Phys. Rev. B 2022, 105, 134524. [Google Scholar] [CrossRef]
- Chatterjee, S.; Wang, T.; Berg, E.; Zaletel, M.P. Intervalley coherent order and isospin uctuation mediated superconductivity in rhombohedral trilayer graphene. arXiv 2021, arXiv:2109.00002. [Google Scholar]
- Dong, Z.; Levitov, L. Superconductivity in the vicinity of an isospin-polarized state in a cubic dirac band. arXiv 2021, arXiv:2109.01133. [Google Scholar]
- Basov, D.N.; Averitt, R.D.; van der Marel, D.; Dressel, M.; Haule, K. Electrodynamics of correlated electron materials. Rev. Mod. Phys. 2011, 83, 471. [Google Scholar] [CrossRef]
- Tabert, C.J.; Nicol, E.J. Optical conductivity of twisted bilayer graphene. Phys. Rev. B 2013, 87, 121402. [Google Scholar] [CrossRef] [Green Version]
- Moon, P.; Koshino, M. Optical absorption in twisted bilayer graphene. Phys. Rev. B 2013, 87, 205404. [Google Scholar] [CrossRef] [Green Version]
- Stauber, T.; San-Jose, P.; Brey, L. Optical conductivity, drude weight and plasmons in twisted graphene bilayers. New J. Phys. 2013, 15, 113050. [Google Scholar] [CrossRef]
- Jang, J.; Ahn, S.; Min, H. Optical conductivity of black phosphorus with a tunable electronic structure. 2D Mater. 2019, 6, 025029. [Google Scholar] [CrossRef] [Green Version]
- Calderón, M.J.; Bascones, E. Correlated states in magic angle twisted bilayer graphene under the optical conductivity scrutiny. npj Quantum Mater. 2020, 5, 57. [Google Scholar] [CrossRef]
- Tan, C.J.; Yan, C.-X.; Zhao, Y.-H.; Guo, H.; Chang, H.-R. Anisotropic longitudinal optical conductivities of tilted Dirac bands in 1T’-MoS2. Phys. Rev. B 2021, 103, 125425. [Google Scholar] [CrossRef]
- Song, B.; Gu, H.; Fang, M.; Ho, Y.T.; Chen, X.; Jiang, H.; Liu, S. Complex optical conductivity of twodimensional mos2: A striking layer dependency. J. Phys. Chem. Lett. 2019, 10, 6246. [Google Scholar] [CrossRef]
- Zhang, G.; Huang, S.; Wang, F.; Xing, Q.; Song, C.; Wang, C.; Lei, Y.; Huang, M.; Yan, H. The optical conductivity of few-layer black phosphorus by infrared spectroscopy. Nat. Commun. 2020, 11, 1847. [Google Scholar] [CrossRef] [Green Version]
- Sachdev, S. Quantum Phase Transitions, 2nd ed.; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Koshino, M.; McCann, E. Trigonal warping and Berry’s phase Nπ in ABC-stacked multilayer graphene. Phys. Rev. B 2009, 80, 165409. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Sahu, B.; Min, H.; MacDonald, A.H. Band structure of abc-stacked graphene trilayers. Phys. Rev. B 2010, 82, 035409. [Google Scholar] [CrossRef]
- Cvetkovic, V.; Vafek, O. Topology and symmetry breaking in abc trilayer graphene. arXiv 2012, arXiv:1210.4923. [Google Scholar]
- Mahan, G.D. Many-Particle Physics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Roy, B.; Goswami, P.; Juričić, V. Interacting weyl fermions: Phases, phase transitions, and global phase diagram. Phys. Rev. B 2017, 95, 201102. [Google Scholar] [CrossRef] [Green Version]
- Roy, B.; Juričić, V. Collisionless transport close to a fermionic quantum critical point in dirac materials. Phys. Rev. Lett. 2018, 121, 137601. [Google Scholar] [CrossRef] [Green Version]
- Rostami, H.; Juričić, V. Probing quantum criticality using nonlinear Hall effect in a metallic Dirac system. Phys. Rev. Res. 2020, 2, 013069. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Ferraro, D.; Zaltron, A.; Galvanetto, N.; Martucci, A.; Sun, L.; Yang, P.; Zhang, Y.; Wang, Y.; Liu, Z.; et al. Optical detection of the susceptibility tensor in two-dimensional crystals. Commun. Phys. 2021, 4, 215. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juričić, V.; Muñoz, E.; Soto-Garrido, R. Optical Conductivity as a Probe of the Interaction-Driven Metal in Rhombohedral Trilayer Graphene. Nanomaterials 2022, 12, 3727. https://doi.org/10.3390/nano12213727
Juričić V, Muñoz E, Soto-Garrido R. Optical Conductivity as a Probe of the Interaction-Driven Metal in Rhombohedral Trilayer Graphene. Nanomaterials. 2022; 12(21):3727. https://doi.org/10.3390/nano12213727
Chicago/Turabian StyleJuričić, Vladimir, Enrique Muñoz, and Rodrigo Soto-Garrido. 2022. "Optical Conductivity as a Probe of the Interaction-Driven Metal in Rhombohedral Trilayer Graphene" Nanomaterials 12, no. 21: 3727. https://doi.org/10.3390/nano12213727
APA StyleJuričić, V., Muñoz, E., & Soto-Garrido, R. (2022). Optical Conductivity as a Probe of the Interaction-Driven Metal in Rhombohedral Trilayer Graphene. Nanomaterials, 12(21), 3727. https://doi.org/10.3390/nano12213727