Highly Efficient Photothermal Reduction of CO2 on Pd2Cu Dispersed TiO2 Photocatalyst and Operando DRIFT Spectroscopic Analysis of Reactive Intermediates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of Pd2Cu/P25 Photocatalyst
2.3. DRIFT Analysis
2.4. Photothermal CO2 Reduction by the Reactor
2.5. Characterizations
2.6. Dark Adsorption by CO2 with Transmission FTIR
3. Results and Discussion
3.1. Material Characterizations
3.2. Photothermal CO2 Reduction
3.3. The FTIR Spectra of the Dark Adsorption of CO2 on Photocatalysts
3.4. In-Situ DRIFT Investigation of Photothermal CO2 Reduction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yoon, Y.; Hall, A.S.; Surendranath, Y. Tuning of silver catalyst mesostructure promotes selective carbon dioxide conversion into fuels. Angew. Chem. Int. Ed. 2016, 55, 15282–15286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodemerck, U.; Holeňa, M.; Wagner, E.; Smejkal, Q.; Barkschat, A.; Baerns, M. Catalyst development for CO2 hydrogenation to fuels. ChemCatChem 2013, 5, 1948–1955. [Google Scholar] [CrossRef]
- Behrens, M. Promoting the Synthesis of Methanol: Understanding the requirements for an industrial catalyst for the conversion of CO2. Angew. Chem. Int. Ed. 2016, 55, 14906–14908. [Google Scholar] [CrossRef]
- Behrens, M. Heterogeneous catalysis of CO2 conversion to methanol on copper surfaces, Angew. Chem. Int. Ed. 2014, 53, 12022–12024. [Google Scholar] [CrossRef] [PubMed]
- Robatjazi, H.; Zhao, H.; Swearer, D.F.; Hogan, N.J.; Zhou, L.; Alabastri, A.; McClain, M.J.; Nordlander, P.; Halas, N.J. Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum–cuprous oxide antenna-reactor nanoparticles. Nat. Commun. 2017, 8, 27. [Google Scholar] [CrossRef]
- Wang, W.; Wang, S.; Ma, X.; Gong, J. Recent advances in catalytic hydrogenation of carbon dioxide. Chem. Soc. Rev. 2011, 4, 3703–3727. [Google Scholar] [CrossRef] [Green Version]
- Klankermayer, J.; Wesselbaum, S.; Beydoun, K.; Leitner, W. Selective catalytic synthesis using the combination of carbon dioxide and hydrogen: Catalytic chess at the interface of energy and chemistry. Angew. Chem. Int. Ed. 2016, 55, 7296–7343. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Rosen, J.; Zhou, Y.; Hutchings, G.S.; Kimmel, Y.C.; Chen, J.G.; Jiao, F. A selective and efficient electrocatalyst for carbon dioxide reduction. Nat. Commun. 2014, 5, 3242. [Google Scholar] [CrossRef]
- Kwak, J.H.; Kovarik, L.; Szanyi, J. Photocatalytic reduction of CO2 on TiO2 and other semiconductors, CO2 reduction on supported Ru/Al2O3 catalysts: Cluster size dependence of product selectivity. ACS Catal. 2013, 3, 2449–2455. [Google Scholar] [CrossRef]
- Porosoff, M.D.; Yang, X.; Boscoboinik, J.A.; Chen, J.G. Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO2 to CO. Angew. Chem. Int. Ed. 2014, 53, 6705–6709. [Google Scholar] [CrossRef]
- Martin, O.; Martín, A.J.; Mondelli, C.; Mitchell, S.; Segawa, T.F.; Hauert, R.; Drouilly, C.; Curulla-Ferré, D.; Pérez-Ramírez, J. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation. Angew. Chem. Int. Ed. 2016, 55, 6261–6265. [Google Scholar] [CrossRef]
- Studt, F.; Sharafutdinov, I.; Abild-Pedersen, F.; Elkjær, C.F.; Hummelshøj, J.S.; Dah, S.; Chorkendorff, I.; Nørskov, J.K. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat. Chem. 2014, 6, 320–324. [Google Scholar] [CrossRef] [PubMed]
- Graciani, J.; Mudiyanselage, K.; Xu, F.; Baber, A.E.; Evans, J.; Senanayake, S.D.; Stacchiola, D.J.; Liu, P.; Hrbek, J.; Sanz, J.F.; et al. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science 2014, 345, 546–550. [Google Scholar] [CrossRef] [PubMed]
- Moret, S.; Dyson, P.J.; Laurenczy, G. Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media. Nat. Commun. 2014, 5, 4017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.; Zhang, S.; Ye, Y.; Zhang, X.; Wang, L.; Zhu, W.; Cheng, F.; Tao, F. Catalytic conversion of carbon dioxide to methane on Ruthenium-Cobalt bimetallic nanocatalysts and correlation between surface chemistry of catalysts under reaction conditions and catalytic performances. ACS Catal. 2012, 2, 2403–2408. [Google Scholar] [CrossRef]
- Mistry, H.; Varela, A.S.; Bonifacio, C.S.; Zegkinoglou, I.; Sinev, I.; Choi, Y.-W.; Kisslinger, K.; Stach, E.A.; Yang, J.C.; Strasser, P.; et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 2016, 7, 12123. [Google Scholar] [CrossRef]
- Choi, Y.H.; Jang, Y.J.; Park, H.; Kimb, W.Y.; Lee, Y.H.; Choi, S.H.; Lee, J.S. Carbon dioxide Fischer–Tropsch synthesis: A new path to carbon-neutral fuels. Appl. Catal. B Environ. 2017, 202, 605–610. [Google Scholar] [CrossRef]
- Li, F.; Li, Y.C.; Wang, Z.; Li, J.; Nam, D.-H.; Lum, Y.; Luo, M.; Wang, X.; Ozden, A.; Hung, S.-F.; et al. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces. Nat. Catal. 2020, 3, 75–82. [Google Scholar] [CrossRef]
- Bai, S.; Shao, Q.; Wang, P.; Dai, Q.; Wang, X.; Huang, X. Highly Active and Selective Hydrogenation of CO2 to Ethanol by Ordered Pd−Cu Nanoparticles. J. Am. Chem. Soc. 2017, 139, 6827–6830. [Google Scholar] [CrossRef]
- Qian, C.; Sun, W.; Hung, D.L.H.; Qiu, C.; Makarem, M.; Kumar, S.G.H.; Wan, L.; Ghoussoub, M.; Wood, T.E.; Xia, M.; et al. Catalytic CO2 reduction by palladium-decorated silicon–hydride nanosheets. Nat. Catal. 2019, 2, 46–54. [Google Scholar] [CrossRef]
- Fujitani, T.; Nakamura, I. Methanol Synthesis from CO and CO2 Hydrogenations over Supported Palladium Catalysts. Bull. Chem. Soc. Jpn. 2002, 75, 1393–1398. [Google Scholar] [CrossRef]
- Crudden, C.M.; Sateesh, M.; Lewis, R. Mercaptopropyl-modified mesoporous silica: Remarkable support for the preparation of a reusable, heterogeneous palladium catalyst for coupling reactions. J. Am. Chem. Soc. 2005, 127, 10045–10050. [Google Scholar] [CrossRef]
- Pang, S.H.; Schoenbaum, C.A.; Schwartz, D.K.; Medlin, J.W. Directing reaction pathways by catalyst active-site selection using self-assembled monolayers. Nat. Commun. 2013, 4, 2448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, G.-J.; Anandan, S.; Masten, S.J.; Wu, J.J. Photocatalytic hydrogen evolution from water splitting using Cu doped ZnS microspheres under visible light irradiation. Renew. Energy 2016, 89, 2619. [Google Scholar] [CrossRef]
- Imtiaz, Q.; Yüzbasi, N.S.; Abdala, P.M.; Kierzkowska, A.M.; Beek, W.V.; Brodaa, M.; Müller, C.R. Development of MgAl2O4-stabilized, Cu-doped, Fe2O3-based oxygen carriers for thermochemical water-splitting. J. Mater. Chem. A. 2016, 4, 113–123. [Google Scholar] [CrossRef]
- Hunge, Y.M.; Yadav, A.A.; Mathe, V.L. Photocatalytic hydrogen production using TiO2 nanogranules prepared by hydrothermal route. Chem. Phys. Lett. 2019, 731, 136582. [Google Scholar] [CrossRef]
- Gosavi, S.; Tabei, R.; Roy, N.; Latthe, S.S.; Hunge, Y.M.; Suzuki, N.; Kondo, T.; Yuasa, M.; Teshima, K.; Fujishima, A.; et al. Low Temperature Deposition of TiO2 Thin Films through Atmospheric Pressure Plasma Jet Processing. Catalysts 2021, 11, 91. [Google Scholar] [CrossRef]
- Chen, Y.-W.; Hsu, Y.-H. Effects of reaction temperature on the photocatalytic activity of TiO2 with Pd and Cu cocatalysts. Catalysts 2021, 11, 966. [Google Scholar] [CrossRef]
- Lohumi, S.; Lee, S.; Lee, H.; Cho, B.K. A review of vibrational spectroscopic techniques for the detection of food authenticity and adulteration. Trends Food Sci. Technol. 2015, 46, 85–98. [Google Scholar] [CrossRef]
- Manju, G.; Archana, J.; Verma, K.K. Dispersive liquid–liquid microextraction and diffuse reflectance-Fourier transform infrared spectroscopy for iodate determination in food grade salt and food samples. Food Chem. 2022, 368, 130810. [Google Scholar]
- Elavarasan, M.; Uma, K.; Yang, T.C.-K. Photocatalytic oxidation of ethanol using ultrasonic modified TiO2; an in-situ diffuse reflectance infrared spectroscopy study. Results Phys. 2019, 13, 1022372. [Google Scholar] [CrossRef]
- Yang, T.C.-K.; Wang, S.-F.; Tsai, S.H.-Y.; Lin, S.-Y. Intrinsic photocatalytic oxidation of the dye adsorbed on TiO2 photocatalysts by diffuse reflectance infrared Fourier transform spectroscopy. Appl. Catal. B Environ. 2001, 30, 293–301. [Google Scholar] [CrossRef]
- Liu, J.; Winwarid, P.; Yang, T.C.-K.; Chuang, S.S.-C. In situ infrared study of photo-generated electrons and adsorbed species on nitrogen-doped TiO2 in dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2018, 20, 19572–19580. [Google Scholar] [CrossRef]
- Xu, F.; Meng, K.; Cheng, B.; Yu, J.; Ho, W. Enhanced Photocatalytic Activity and Selectivity for CO2 Reduction over a TiO2 Nanofiber Mat Using Ag and MgO as Bi-Cocatalyst. ChemCatChem. 2019, 11, 465–472. [Google Scholar] [CrossRef]
- Yang, Q.; Le, X.; Li, Y.; Ian, T.M.; Guo, F.; Tao, M.; Yang, R.; Qi, L.; Lin, Z.; Gu, S.; et al. BCC-Phased PdCu Alloy as a Highly Active Electrocatalyst for Hydrogen Oxidation in Alkaline Electrolytes. J. Am. Chem. Soc. 2018, 140, 16580–16588. [Google Scholar] [CrossRef]
- Gu, Z.; Xiong, Z.; Ren, F.; Li, S.; Xu, H.; Yan, B.; Du, Y. Flower-like PdCu catalyst with high electrocatalytic properties for ethylene glycol oxidation. J. Taiwan Inst. Chem. E 2018, 83, 32–39. [Google Scholar] [CrossRef]
- Tiscione, N.B.; Alford, I.; Yeatman, D.T.; Shan, X. Ethanol Analysis by Headspace Gas Chromatography with Simultaneous Flame-Ionization and Mass Spectrometry Detection. J. Anal. Toxicol. 2011, 35, 501–511. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Qian, Q.; Ma, J.; Meng, Q.; Zhou, H.; Song, J.; Liu, Z.; Han, B. Water-enhanced synthesis of higher alcohols from CO2 hydrogenation over a Pt/Co3O4 catalyst under Milder conditions, Angew. Chem. Int. Ed. 2016, 55, 737–741. [Google Scholar] [CrossRef]
- Pan, X.; Fan, Z.; Chen, W.; Ding, Y.; Luo, H.; Bao, X. Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nat. Mater. 2007, 6, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Medford, A.J.; Liu, X.; Studt, F.; Bligaard, T.; Bent, S.F.; Nørskov, J.K. Intrinsic selectivity and structure sensitivity of rhodium catalysts for C2+ oxygenate production. J. Am. Chem. Soc. 2016, 138, 3705–3714. [Google Scholar] [CrossRef]
- Wang, D.; Bi, Q.; Yin, G.; Zhao, W.; Huang, F.; Xie, X.; Jiang, M. Direct synthesis of ethanol via CO2 hydrogenation using supported gold catalysts. Chem. Commun. 2016, 52, 14226–14229. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Koizumi, N.; Guo, X.; Song, C. Bimetallic Pd–Cu catalysts for selective CO2 hydrogenation to methanol. Appl. Catal. B Environ. 2015, 170, 173–185. [Google Scholar] [CrossRef]
- Baltrusaitis, J.; Jensen, J.H.; Grassian, V.H. FTIR spectroscopy combined with isotope labeling and quantum chemical calculations to investigate adsorbed bicarbonate formation following reaction of carbon dioxide with surface hydroxyl groups on Fe2O3 and Al2O3. J. Phys. Chem. B 2006, 110, 12005–12016. [Google Scholar] [CrossRef]
- Turek, A.M.; Wachs, I.E.; DeCanio, E. Acidic properties of alumina-supported metal oxide catalysts: An infrared spectroscopy study. J. Phys. Chem. B 1992, 96, 5000–5007. [Google Scholar] [CrossRef]
- Collins, S.E.; Baltanás, M.A.; Bonivardi, A.L. Infrared spectroscopic study of the carbon dioxide adsorption on the surface of Ga2O3 polymorphs. J. Phys. Chem. B 2006, 110, 5498–5507. [Google Scholar] [CrossRef]
- Collins, S.E.; Baltanas, M.A.; Bonivardi, A.L. An infrared study of the intermediates of methanol synthesis from carbon dioxide over Pd/β-Ga2O3. J. Catal. 2004, 226, 410–421. [Google Scholar] [CrossRef]
- Köck, E.M.; Kogler, M.; Bielz, T.; Klötzer, B.; Penner, S. In situ FT-IR spectroscopic study of CO2 and CO adsorption on Y2O3, ZrO2, and yttria-stabilized ZrO2. J. Phys. Chem. C 2013, 117, 17666–17673. [Google Scholar]
- Yu, Z.; Chuang, S.S.C. In situ IR study of adsorbed species and photo-generated electrons during photocatalytic oxidation of ethanol on TiO2. J. Catal. 2007, 246, 118–126. [Google Scholar] [CrossRef]
- Elavarasan, M.; Uma, K.; Yang, T.C.-K. Nanocubes phase adaptation of In2O3/TiO2 heterojunction photocatalysts for the dye degradation and tracing of adsorbed species during photo-oxidation of ethanol. J. Taiwan Inst. Chem. E 2021, 120, 1–9. [Google Scholar] [CrossRef]
- Guzman, F.; Chuang, S.S.C. Tracing the Reaction Steps Involving Oxygen and IR Observable Species in Ethanol Photocatalytic Oxidation on TiO2. J. Am. Chem. Soc. 2010, 132, 1502–1503. [Google Scholar] [CrossRef] [PubMed]
ICP Analysis | Pd | Cu | Ti |
---|---|---|---|
mg L−1 | 0.0416 | 0.0129 | 0.232 |
Molecular Weight | 106.42 | 63.54 | 47.867 |
mMolL−1 | 3.9 × 10−4 | 2.0 × 10−4 | 4.8 × 10−3 |
Molar ratios | ~2 | 1 | 24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elavarasan, M.; Yang, W.; Velmurugan, S.; Chen, J.-N.; Yang, T.C.-K.; Yokoi, T. Highly Efficient Photothermal Reduction of CO2 on Pd2Cu Dispersed TiO2 Photocatalyst and Operando DRIFT Spectroscopic Analysis of Reactive Intermediates. Nanomaterials 2022, 12, 332. https://doi.org/10.3390/nano12030332
Elavarasan M, Yang W, Velmurugan S, Chen J-N, Yang TC-K, Yokoi T. Highly Efficient Photothermal Reduction of CO2 on Pd2Cu Dispersed TiO2 Photocatalyst and Operando DRIFT Spectroscopic Analysis of Reactive Intermediates. Nanomaterials. 2022; 12(3):332. https://doi.org/10.3390/nano12030332
Chicago/Turabian StyleElavarasan, Munirathinam, Willie Yang, Sethupathi Velmurugan, Jyy-Ning Chen, Thomas C.-K. Yang, and Toshiyuki Yokoi. 2022. "Highly Efficient Photothermal Reduction of CO2 on Pd2Cu Dispersed TiO2 Photocatalyst and Operando DRIFT Spectroscopic Analysis of Reactive Intermediates" Nanomaterials 12, no. 3: 332. https://doi.org/10.3390/nano12030332
APA StyleElavarasan, M., Yang, W., Velmurugan, S., Chen, J. -N., Yang, T. C. -K., & Yokoi, T. (2022). Highly Efficient Photothermal Reduction of CO2 on Pd2Cu Dispersed TiO2 Photocatalyst and Operando DRIFT Spectroscopic Analysis of Reactive Intermediates. Nanomaterials, 12(3), 332. https://doi.org/10.3390/nano12030332