Preparation and Photocatalytic Properties of Anatase TiO2 with Hollow Hexagonal Frame Structure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthetic Process
2.3. Characterization
2.4. Photoelectrochemical Test
2.5. Measurement of Photocatalytic Activity
2.6. Measurement of Photocatalytic H2 Evolution
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Z.Y.; Zhang, X.T.; Nishimoto, S.; Murakami, T.; Fujishima, A. Efficient photocatalytic degradation of gaseous acetaldehyde by highly ordered TiO2 nanotube arrays. Environ. Sci. Technol. 2008, 42, 8547–8551. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.G.; Dou, H.Q.; Pan, J.H.; Ma, J.Z.; Xu, C.; Zhao, X.S. Synthesis of mesoporous anatase TiO2 with a combined template method and photocatalysis. Crystengcomm 2010, 12, 3455–3457. [Google Scholar] [CrossRef]
- Hu, X.; Hu, X.J.; Peng, Q.Q.; Zhou, L.; Tan, X.F.; Jiang, L.H.; Tang, C.F.; Wang, H.; Liu, S.H.; Wang, Y.Q.; et al. Mechanisms underlying the photocatalytic degradation pathway of ciprofloxacin with heterogeneous TiO2. Chem. Eng. J. 2020, 380, 122366. [Google Scholar] [CrossRef]
- Wang, T.; Shen, D.Y.; Xu, T.; Jiang, R.L. Photocatalytic degradation properties of V-doped TiO2 to automobile exhaust. Sci. Total Environ. 2017, 586, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Weng, Z.Y.; Guo, H.; Liu, X.M.; Wu, S.L.; Yeung, K.W.K.; Chu, P.K. Nanostructured TiO2 for energy conversion and storage. Rsc Adv. 2013, 3, 24758–24775. [Google Scholar] [CrossRef]
- Rawool, S.A.; Yadav, K.K.; Polshettiwar, V. Defective TiO2 for photocatalytic CO2 conversion to fuels and chemicals. Chem. Sci. 2021, 12, 4267–4299. [Google Scholar] [CrossRef]
- Jeon, J.P.; Kweon, D.H.; Jang, B.J.; Ju, M.J.; Baek, J.B. Enhancing the photocatalytic activity of TiO2 catalysts. Adv. Sustain. Syst. 2020, 4, 2000197. [Google Scholar] [CrossRef]
- Fang, W.Q.; Zhou, J.Z.; Liu, J.; Chen, Z.G.; Yang, C.; Sun, C.H.; Qian, G.R.; Zhou, J.; Qiao, S.Z.; Yang, H.G. Hierarchical structures of single-crystalline anatase TiO2 nanosheets dominated by (001) facets. Chem. Eur. J. 2011, 17, 1423–1427. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.Y.; Wang, X.L.; Wang, L.; QLin, N.; Zhao, H.T. Self-doped TiO2 hierarchical hollow spheres with enhanced visible-light photocatalytic activity. J. Alloy. Compd. 2015, 640, 68–74. [Google Scholar] [CrossRef]
- Docampo, P.; Guldin, S.; Stefik, M.; Tiwana, P.; Orilall, M.C.; Hüttner, S.; Sai, H.; Wiesner, U.; Steiner, U.; Snaith, H.J. Control of solid-state dye-sensitized solar cell performance by block-copolymer-directed TiO2 synthesis. Adv. Funct. Mater. 2010, 20, 1787–1796. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.C.; Li, L.; Ge, M.; Guo, C.S.; Wang, J.F.; Liu, L. Improved catalytic capability of mesoporous TiO2 microspheres and photodecomposition of toluene. Acs Appl. Mater. Interfaces 2010, 2, 3134–3140. [Google Scholar] [CrossRef] [PubMed]
- Valero-Romero, M.J.; Santaclara, J.G.; Oar-Arteta, L.; Koppen, L.; Osadchii, D.Y.; Gascon, J.; Kapteijn, F. Photocatalytic properties of TiO2 and Fe-doped TiO2 prepared by metal organic framework-mediated synthesis. Chem. Eng. J. 2019, 36, 75–88. [Google Scholar] [CrossRef]
- Sofianou, M.V.; Psycharis, V.; Boukos, N.; Vaimakis, T.; Yu, J.G.; Dillert, R.; Bahnemann, D.; Trapalis, C. Tuning the photocatalytic selectivity of TiO2 anatase nanoplates by altering the exposed crystal facets content. Appl. Catal. B Environ. 2013, 142–143, 761–768. [Google Scholar] [CrossRef]
- Barbé, C.J.; Arendse, F.; Comte, P.; Jirousek, M.; Lenzmann, F.; Shklover, V.; Grätzel, M. Nanocrystalline titanium oxide electrodes for photovoltaic applications. J. Am. Ceram. Soc. 2010, 80, 3157–3171. [Google Scholar] [CrossRef]
- Nian, J.N.; Teng, H. Hydrothermal synthesis of single-crystalline anatase TiO2 nanorods with nanotubes as the precursor. J. Phys. Chem. B 2006, 110, 4193–4198. [Google Scholar] [CrossRef]
- Liu, M.; Piao, L.Y.; Lu, W.M.; Ju, S.T.; Zhao, L.; Zhou, C.L.; Li, H.L.; Wang, W.J. Flower-like TiO2 nanostructures with exposed {001} facets: Facile synthesis and enhanced photocatalysis. Nanoscale 2010, 2, 1115–1117. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Yoo, J.E.; Altomare, M.; Schmuki, P. Suspended Pt nanoparticles over TiO2 nanotubes for enhanced photocatalytic H2 evolution. Chem. Commun. 2016, 50, 9653. [Google Scholar] [CrossRef] [Green Version]
- Réti, B.; Kiss, G.I.; Gyulavári, T.; Baan, K.; Magyari, K.; Hernadi, K. Carbon sphere templates for TiO2 hollow structures: Preparation, characterization and photocatalytic activity. Catal. Today 2017, 284, 160–168. [Google Scholar] [CrossRef] [Green Version]
- Kartini, I.; Meredith, P.; Zhao, X.S.; Costa, J.C.; Lu, G.Q. A two-step sol-gel method for synthesis of nanoporous TiO2. J. Nanosci. Nanotechnol. 2004, 4, 270. [Google Scholar] [CrossRef]
- Gong, X.Q.; Selloni, A. Reactivity of anatase TiO2 nanoparticles: The role of the minority (001) surface. J. Phys. Chem. B 2005, 109, 19560–19562. [Google Scholar] [CrossRef]
- Selloni, A. Crystal growth: Anatase shows its reactive side. Nat. Mater. 2008, 7, 613–615. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.H.; Zhang, X.W.; Du, A.J.; Sun, D.D.; Leckie, J.O. Self-etching reconstruction of hierarchically mesoporous F-TiO2 hollow microspherical photocatalyst for concurrent membrane water purifications. J. Am. Chem. Soc. 2008, 130, 11256–11257. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.Q.; Wu, Z.B.; Liu, Y. A Simple Two-Step Template Approach for Preparing Carbon-Doped Mesoporous TiO2 Hollow Microspheres. J. Phys. Chem. C 2009, 113, 13317–13324. [Google Scholar] [CrossRef]
- Cao, Q.; Li, Q.Q.; Pi, Z.C.; Zhang, J.; Sun, L.W.; Xu, J.Z.; Cao, Y.Y.; Cheng, J.Y.; Bian, Y. Metal–organic-framework-derived ball-flower-like porous Co3O4/Fe2O3 heterostructure with enhanced visible-light-driven photocatalytic activity. Nanomaterials 2022, 12, 904. [Google Scholar] [CrossRef]
- Xia, X.H.; Peng, S.; Bao, Y.W.; Wang, Y.; Lei, B.L.; Wang, Z.; Huang, Z.B.; Gao, Y. Control of interface between anatase TiO2 nanoparticles and rutile TiO2 nanorods for efficient photocatalytic H2 generation. J. Power Sources 2018, 376, 11–17. [Google Scholar] [CrossRef]
- Liu, P.; Wang, Y.; Zhang, H.M.; An, T.C.; Yang, H.G.; Tang, Z.Y.; Cai, W.P.; Zhao, H.J. Vapor-phase hydrothermal transformation of HTiOF3 intermediates into {001} faceted anatase single-crystalline nanosheets. Small 2012, 8, 3664–3673. [Google Scholar] [CrossRef]
- Bao, Y.P.; Lim, T.T.; Zhong, Z.Y.; Wang, R.; Hu, X. Acetic acid-assisted fabrication of hierarchical flower-like Bi2O3 for photocatalytic degradation of sulfamethoxazole and rhodamine B under solar irradiation. J. Colloid Interf. Sci. 2017, 505, 489–499. [Google Scholar] [CrossRef]
- Wu, T.X.; Wang, G.Z.; Zhu, X.G.; Liu, P.; Zhang, X.; Zhang, H.M.; Zhang, Y.X.; Zhao, H.J. Growth and in situ transformation of TiO2 and HTiOF3 crystals on chitosan-polyvinyl alcohol co-polymer substrates under vapor phase hydrothermal conditions. Nano Res. 2016, 9, 745–754. [Google Scholar] [CrossRef]
- Chen, M.; Ma, J.Z.; Zhang, B.; Wang, F.; Li, Y.B.; Zhang, C.B.; He, H. Facet-dependent performance of anatase TiO2 for photocatalytic oxidation of gaseous ammonia. Appl. Catal. B Environ. 2018, 223, 209–215. [Google Scholar] [CrossRef]
- Zheng, Y.; Hu, X.; Yang, P. Phase and morphology transformation from assembled hexagonal HTiOF3 prisms to {001} faceted TiO2 nanosheets. Crystengcomm 2018, 20, 4485–4491. [Google Scholar] [CrossRef]
- Hou, C.T.; Liu, H.Y.; Bakhtair, M.F. Preparation of Ag SPR-promoted TiO2-{001}/HTiOF3 photocatalyst with oxygen vacancies for highly efficient degradation of tetracycline hydrochloride. Mat. Sci. Semicon. Proc. 2021, 136, 106142. [Google Scholar] [CrossRef]
- Liu, Y.J.; Liu, H.X.; Zhou, H.M.; Li, T.D.; Zhang, L.N. A Z-scheme mechanism of N-ZnO/g-C3N4 for enhanced H2 evolution and photocatalytic degradation. Appl. Surf. Sci. 2019, 466, 133–140. [Google Scholar] [CrossRef]
- Shen, J.; Wang, R.; Liu, Q.Q.; Yang, X.F.; Tang, H.; Yang, J. Accelerating photocatalytic hydrogen evolution and pollutant degradation by coupling organic co-catalysts with TiO2. Chin. J. Catal. 2019, 40, 380–389. [Google Scholar] [CrossRef]
- Kaur, M.; Kaur, M.; Singh, D.; Oliveira, A.C.; Garg, V.K.; Sharma, V.K. Synthesis of CaFe2O4-NGO nanocomposite for effective removal of heavy metal ion and photocatalytic degradation of organic pollutants. Nanomaterials 2021, 11, 1471. [Google Scholar] [CrossRef]
- Wang, J.L.; Wang, X.Q.; Chen, Q.H.; Xu, H.L.; Dai, M.; Zhang, M.; Wang, W.Y.; Song, H. Microstructural modification of hollow TiO2 nanospheres and their photocatalytic performance. Appl. Surf. Sci. 2021, 535, 1484–1495. [Google Scholar] [CrossRef]
- Yu, J.C.; Yu, J.G.; Ho, W.; Jiang, Z.T.; Zhang, L.Z. Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem. Mater. 2002, 14, 3808–3816. [Google Scholar] [CrossRef]
- Yu, J.G.; Zhao, X.J. Effect of surface treatment on the photocatalytic activity and hydrophilic property of the sol-gel derived TiO2 thin films. Mater. Res. Bull. 2001, 36, 97–107. [Google Scholar] [CrossRef]
- Pan, L.; Wang, S.B.; Xie, J.W.; Wang, L.; Zhang, X.W.; Zou, J.J. Constructing TiO2 p-n homojunction for photoelectrochemical and photocatalytic hydrogen generation. Nano Energy 2016, 28, 296–303. [Google Scholar] [CrossRef]
- Inbaraj, B.S.; Chen, B.Y.; Liao, C.W.; Chen, B.H. Green synthesis, characterization and evaluation of catalytic and antibacterial activities of chitosan, glycol chitosan and poly(γ-glutamic acid) capped gold nanoparticles. Int. J. Biol. Macromol. 2020, 161, 1484–1495. [Google Scholar] [CrossRef]
- Bai, S.; Liu, X.; Li, D.Q.; Chen, S.; Luo, R.X.; Chen, A.F. Synthesis of ZnO nanorods and its application in NO2 sensors. Sens. Actuat. B Chem. 2011, 153, 110–116. [Google Scholar] [CrossRef]
- Naeimi, A.; Sharifi, A.; Montazerghaem, L.; Abhari, A.R.; Mahmoodi, Z.; Bakr, Z.H.; Soldatov, A.V.; Ali, G.A.M. Transition metals doped WO3 photocatalyst towards high efficiency decolourization of azo dye. J. Mol. Struct. 2022, 1250, 131800. [Google Scholar] [CrossRef]
- Ethiraj, A.S.; Uttam, P.; Varunkumar, K.; Chong, K.F.; Ali, G.A.M. Photocatalytic performance of a novel semiconductor nanocatalyst: Copper doped nickel oxide for phenol degradation. Mater. Chem. Phys. 2020, 242, 122520. [Google Scholar] [CrossRef]
- Zyoud, A.; Zu’bi, A.; Helal, M.H.S.; Park, D.; Campet, G.; Hilal, H.S. Optimizing photo-mineralization of aqueous methyl orange by nano-ZnO catalyst under simulated natural conditions. J. Environ. Health Sci. Eng. 2015, 13, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.J.; Xia, P.F.; Zhang, L.Y.; Cheng, B.; Yu, J.G. Enhanced photocatalytic H2-production activity of g-C3N4 nanosheets via optimal photodeposition of Pt as cocatalyst. Acs Sustain. Chem. Eng. 2018, 6, 10472–10480. [Google Scholar] [CrossRef]
- Yang, X.Y.; Liu, H.X.; Li, T.D.; Huang, B.B.; Hu, W.; Jiang, Z.Y.; Chen, J.B.; Niu, Q.F. Preparation of flower-like ZnO@ZnS core-shell structure enhances photocatalytic hydrogen production. Int. J. Hydrogen Energy 2020, 45, 26967–26978. [Google Scholar] [CrossRef]
- Ruqaishy, M.A.; Marzouqi, F.A.; Qi, K.Z.; Liu, S.Y.; Karthikeyan, S.; Kim, Y.; Al-Kindy, S.M.Z.; Kuvarega, A.T.; Selvaraj, R. Template-free preparation of TiO2 microspheres for the photocatalytic degradation of organic dyes. Korean J. Chem. Eng. 2018, 35, 2283–2289. [Google Scholar] [CrossRef]
- Wang, T.; Gao, Y.; Tang, T.; Bian, H.Q.; Zhang, Z.M.; Xu, J.H.; Xiao, H.; Chu, X. Preparation of ordered TiO2 nanofibers/nanotubes by magnetic field assisted electrospinning and the study of their photocatalytic properties. Ceram. Int. 2019, 45, 14404–14410. [Google Scholar] [CrossRef]
- Xu, X.J.; Fang, X.S.; Zhai, T.Y.; Zeng, H.B.; Liu, B.D.; Hu, X.Y.; Bando, Y.; Golberg, D. Tube-in-Tube TiO2 nanotubes with porous walls: Fabrication, formation mechanism, and photocatalytic properties. Small 2011, 7, 445–449. [Google Scholar] [CrossRef]
- Kanjana, N.; Maiaugree, W.; Poolcharuansin, P.; Laokul, P. Size controllable synthesis and photocatalytic performance of mesoporous TiO2 hollow spheres. J. Mater. Sci. Technol. 2020, 48, 105–113. [Google Scholar] [CrossRef]
- Du, Y.B.; Xu, X.Y.; Lin, L.; Ge, M.Y.; He, D.N. 3D hierarchical flower-like rutile TiO2 nanospheres-based versatile photocatalyst. J. Mater. Sci. 2018, 53, 385–395. [Google Scholar] [CrossRef]
- Chen, K.M.; Jiang, Z.; Qin, J.L.; Jiang, Y.; Li, R.; Tang, H.; Yang, X.F. Synthesis and improved photocatalytic activity of ultrathin TiO2 nanosheets with nearly 100% exposed (001) facets. Ceram. Int. 2014, 40, 16817–16823. [Google Scholar] [CrossRef]
Sample Number | TBT (mol) | Titanium Tetraisopropanolate (mol) | HAc (mL) | Isopropanol (mL) | HF (mL) |
---|---|---|---|---|---|
S1 | 0.1 | 0 | 28 | 21 | 1.6 |
S2 | 0.1 | 0 | 0 | 21 | 1.6 |
S3 | 0.1 | 0 | 28 | 0 | 1.6 |
S4 | 0.1 | 0 | 28 | 21 | 0 |
S5 | 0 | 0.01 | 28 | 21 | 1.6 |
Sample | BET Surface Area (m2/g) | Pore Volume (cm3/g) |
---|---|---|
100 °C/2 h 1 | 23.2 | 0.152 |
300 °C/2 h 2 | 41.6 | 0.221 |
600 °C/2 h 3 | 48.7 | 0.253 |
600 °C/7 h 4 | 51.9 | 0.571 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teng, M.; Liu, H.; Lin, B.; Zhou, X.; Zhou, W. Preparation and Photocatalytic Properties of Anatase TiO2 with Hollow Hexagonal Frame Structure. Nanomaterials 2022, 12, 1409. https://doi.org/10.3390/nano12091409
Teng M, Liu H, Lin B, Zhou X, Zhou W. Preparation and Photocatalytic Properties of Anatase TiO2 with Hollow Hexagonal Frame Structure. Nanomaterials. 2022; 12(9):1409. https://doi.org/10.3390/nano12091409
Chicago/Turabian StyleTeng, Mengyuan, Haixia Liu, Bensheng Lin, Xiangzhu Zhou, and Wei Zhou. 2022. "Preparation and Photocatalytic Properties of Anatase TiO2 with Hollow Hexagonal Frame Structure" Nanomaterials 12, no. 9: 1409. https://doi.org/10.3390/nano12091409
APA StyleTeng, M., Liu, H., Lin, B., Zhou, X., & Zhou, W. (2022). Preparation and Photocatalytic Properties of Anatase TiO2 with Hollow Hexagonal Frame Structure. Nanomaterials, 12(9), 1409. https://doi.org/10.3390/nano12091409