The Effect of Surface Hydroxyls on the Humidity-Sensitive Properties of LiCl-Doped ZnSn(OH)6 Sphere-Based Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of ZHS Precursor
2.3. Synthesis of LiCl/ZHS Samples
2.4. Materials Characterization
2.5. Fabrication and Measurement of Humidity Sensors
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tripathy, A.; Pramanik, S.; Cho, J.; Santhosh, J.; Abu Osman, N.A. Role of morphological structure, doping, and coating of different materials in the sensing characteristics of humidity sensors. Sensors 2014, 14, 16343–16422. [Google Scholar] [CrossRef] [PubMed]
- Shellaiah, M.; Sun, K.W. Review on sensing applications of perovskite nanomaterials. Chemosensors 2020, 8, 55. [Google Scholar] [CrossRef]
- Traversa, E. Ceramic sensors for humidity detection: The state-of-the-art and future developments. Sens. Actuators 1995, 23, 135–156. [Google Scholar] [CrossRef]
- Wang, R.; Liu, X.; He, Y.; Yuan, Q.; Li, X.; Lu, G.; Zhang, T. The humidity-sensitive property of MgO-SBA-15 composites in one-pot synthesis. Sens. Actuators B 2010, 145, 386–393. [Google Scholar] [CrossRef]
- Zhao, Z.-g.; Liu, X.-w.; Chen, W.-P.; Li, T. Carbon nanotubes humidity sensor based on high testing frequencies. Sens. Actuators A 2011, 168, 10–13. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, W.; Yang, H.; Li, M.; Li, Y.; Zhao, W.; Sun, P.; Yuan, M.; Ma, D.; Liu, B.; et al. A novel humidity sensor based on Na2Ti3O7 nanowires with rapid response-recovery. Sens. Actuators B 2008, 135, 317–321. [Google Scholar] [CrossRef]
- Dai, J.X.; Zhang, T.; Qi, R.R.; Zhao, H.R.; Fei, T.; Lu, G.Y. LiCl loaded cross-linked polymer composites by click reaction for humidity sensing. Sens. Actuators B 2017, 253, 361–367. [Google Scholar] [CrossRef]
- Wu, Z.; Yang, J.; Sun, X.; Wu, Y.; Wang, L.; Meng, G.; Kuang, D.; Guo, X.; Qu, W.; Du, B.; et al. An excellent impedance-type humidity sensor based on halide perovskite CsPbBr3 nanoparticles for human respiration monitoring. Sens. Actuators 2021, 337, 129772. [Google Scholar] [CrossRef]
- Aoki, H.; Azuma, Y.; Asaka, T.; Higuchi, M.; Asaga, K.; Katayama, K. Improvement of response characteristics of TiO2 humidity sensors by simultaneous addition of Li2O and V2O5. Ceram. Int. 2008, 34, 819–822. [Google Scholar] [CrossRef]
- Ke, S.M.; Huang, H.T.; Fan, H.Q.; Chan, H.L.W.; Zhou, L.M. Structural and electric properties of barium strontium titanate based ceramic composite as a humidity sensor. Solid State Ion. 2008, 179, 1632–1635. [Google Scholar] [CrossRef]
- Li, N.; Jiang, Y.; Zhou, C.; Xiao, Y.; Meng, B.; Wang, Z.; Huang, D.; Xing, C.; Peng, Z. High-Performance Humidity Sensor Based on Urchin-Like Composite of Ti3C2 MXene-Derived TiO2 Nanowires. ACS Appl. Mater. Interfaces 2019, 11, 38116–38125. [Google Scholar] [CrossRef] [PubMed]
- Mutee Ur Rehman, H.M.; Rehman, M.M.; Saqib, M.; Ali Khan, S.; Khan, M.; Yang, Y.; Kim, S.; Rahman, S.A.; Kim, W.-Y. Highly efficient and wide range humidity response of biocompatible egg white thin film. Nanomaterials 2021, 11, 1815. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, Y.; Zhang, Y.; Cheng, X.; Feng, C.; Chen, L.; Zhou, J.; Ruan, S. A novel humidity sensor based on NaTaO3 nanocrystalline. Sens. Actuators 2012, 174, 485–489. [Google Scholar] [CrossRef]
- Weng, Z.; Qin, J.; Umar, A.A.; Wang, J.; Zhang, X.; Wang, H.; Cui, X.; Li, X.; Zheng, L.; Zhan, Y. Lead-free Cs2BiAgBr6 double perovskite-based humidity sensor with superfast recovery Time. Adv. Funct. Mater. 2019, 29, 1902234–1902242. [Google Scholar] [CrossRef]
- Feng, C.H.; Ruan, S.P.; Li, J.J.; Zou, B.; Luo, J.Y.; Chen, W.Y.; Dong, W.; Wu, F.Q. Ethanol sensing properties of LaCoxFe1-xO3 nanoparticles: Effects of calcination temperature, Co-doping, and carbon nanotube-treatment. Sens. Actuators 2011, 155, 232–238. [Google Scholar] [CrossRef]
- Fergus, J.W. Perovskite oxides for semiconductor-based gas sensors. Sens. Actuators 2007, 123, 1169–1179. [Google Scholar] [CrossRef]
- Jena, H.; Kutty, K.V.G.; Kutty, T.R.N. Ionic transport and structural investigations on MSn(OH)6 (M = Ba, Ca, Mg, Co, Zn, Fe, Mn) hydroxide perovskites synthesized by wet sonochemical methods. Mater. Chem. Phys. 2004, 88, 167–179. [Google Scholar] [CrossRef]
- Wang, W.Y.; Ma, Z.W.; Liang, R.J.; Wu, T.H.; Wu, Y. Synthesis and photocatalytic performance of SnZn(OH)6 with different morphologies. J. Mater. Res. 2013, 28, 1582–1588. [Google Scholar] [CrossRef]
- Chen, F.; Yang, Q.; Niu, C.G.; Li, X.M.; Zhangab, C.; Zengab, G.M. Plasmonic photocatalyst AgO-AgCl/ZnSn(OH)6: Synthesis, characterization and enhanced visible-light photocatalytic activity in the decomposition of dyes and phenol. Rsc Advances 2015, 5, 63152–63164. [Google Scholar] [CrossRef]
- Lu, Y.F.; Huang, Y.; Cao, J.J.; Li, H.W.; Ho, W.K.; Lee, S.C. Constructing Z-scheme SnO2/N-doped carbon quantum dots/ZnSn(OH)6 nanohybrids with high redox ability for NOx removal under VIS-NIR light. J. Mater. Chem. A 2019, 7, 15782–15793. [Google Scholar] [CrossRef]
- Mohamed, R.M.; Aazam, E.S. Photocatalytic conversion of 4-nitroaniline to p-phenylenediamine using Ni/ZnSn(OH)6 nanoparticles. J. Ind. Eng. Chem. 2014, 20, 3329–3334. [Google Scholar] [CrossRef]
- Juang, F.R.; Chern, W.C.; Chen, B.Y. Carbon dioxide gas sensing properties of ZnSn(OH)6-ZnO nanocomposites with ZnO nanorod structures. Thin Solid Films 2018, 660, 771–776. [Google Scholar] [CrossRef]
- Liu, X.W.; Wu, W.H.; Qi, Y.X.; Qu, H.Q.; Xu, J.Z. Synthesis of a hybrid zinc hydroxystannate/reduction graphene oxide as a flame retardant and smoke suppressant of epoxy resin. J. Therm. Anal. Calorim. 2016, 126, 553–559. [Google Scholar] [CrossRef]
- Duan, J.F.; Hou, S.C.; Chen, S.G.; Duan, H.G. Synthesis of amorphous ZnSnO3 hollow nanoboxes and their lithium storage properties. Mater. Lett. 2014, 122, 261–264. [Google Scholar] [CrossRef]
- Liu, L.L.; Yang, Z.H. The composite of ZnSn(OH)6 and Zn-Al layered double hydroxides used as negative material for zinc-nickel alkaline batteries. Ionics 2018, 24, 2035–2045. [Google Scholar] [CrossRef]
- Chen, P.C.; Wan, L.S.; Ke, B.B.; Xu, Z.K. Honeycomb-Patterned Film Segregated with Phenylboronic Acid for Glucose Sensing. Langmuir 2011, 27, 12597–12605. [Google Scholar] [CrossRef]
- Patil, S.; Ramgir, N.; Mukherji, S.; Rao, V.R. PVA modified ZnO nanowire based microsensors platform for relative humidity and soil moisture measurement. Sens. Actuators 2017, 253, 1071–1078. [Google Scholar] [CrossRef]
- Cha, X.L.; Yu, F.F.; Fan, Y.; Chen, J.F.; Wang, L.Y.; Xiang, Q.; Duan, Z.M.; Xu, J.Q. Superhydrophilic ZnO nanoneedle array: Controllable in situ growth on QCM transducer and enhanced humidity sensing properties and mechanism. Sens. Actuators 2018, 263, 436–444. [Google Scholar] [CrossRef]
- Fu, X.; Huang, D.; Qin, Y.; Li, L.; Jiang, X.; Chen, S. Effects of preparation method on the microstructure and photocatalytic performance of ZnSn(OH)6. Appl. Catal. B 2014, 148, 532–542. [Google Scholar] [CrossRef]
- Chen, Y.; Li, D.; He, M.; Hu, Y.; Ruan, H.; Lin, Y.; Hu, J.; Zheng, Y.; Shao, Y. High photocatalytic performance of zinc hydroxystannate toward benzene and methyl orange. Appl. Catal. B 2012, 113–114, 134–140. [Google Scholar] [CrossRef]
- Minh-Thuan, P.; Dai-Phat, B.; Lin, I.-F.; Nguyen Hoang, P.; Huang, Y.; Cao, J.; You, S.-J.; Wang, Y.-F. Enhanced near-visible-light photocatalytic removal of formaldehyde over Au-assisted ZnSn(OH)6 microcubes. Environ. Technol. Innov. 2020, 20, 31412–31443. [Google Scholar]
- Feng, M.H.; Wang, W.C.; Li, X.J. LiCl-enhanced capacitive humidity-sensing properties of cadmium sulfide grown on silicon nanoporous pillar array. J. Mater. Sci. 2017, 52, 3841–3848. [Google Scholar] [CrossRef]
- Liang, S.; He, X.W.; Wang, F.; Geng, W.C.; Fu, X.; Ren, J.; Jiang, X.M. Highly sensitive humidity sensors based on LiCl-Pebax 2533 composite nanofibers via electrospinning. Sens. Actuators 2015, 208, 363–368. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, J.; Chen, C.; Li, Q.Z.; Liu, J.J.; Zhang, Z.C. Regulating the dissociation of LiCl and transportation of Li ions within UiO-66-NH2 framework for humidity sensing applications with superb comprehensive performances. J. Alloys Compd. 2020, 818, 152854–152880. [Google Scholar] [CrossRef]
- Zhu, K.M.; Tang, Y.; Zhong, X.L.; Xiong, L.; Zhang, Y.; Tan, C.B.; Song, H.J.; Wang, J.B. Improved response/recovery time and sensitivity of SnSe nanosheet humidity sensor by LiCl Incorporation. Adv. Electron. Mater. 2020, 6, 1901330–1901338. [Google Scholar] [CrossRef]
- Khan, M.U.; Hassan, G.; Bae, J. Bio-compatible organic humidity sensor based on natural inner egg shell membrane with multilayer crosslinked fiber structure. Sci. Rep. 2019, 9, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Sajid, M.; Kim, H.B.; Yang, Y.J.; Jo, J.; Choi, K.H. Highly sensitive BEHP-co-MEH:PPV plus Poly(acrylic acid) partial sodium salt based relative humidity sensor. Sens. Actuators 2017, 246, 809–818. [Google Scholar] [CrossRef]
- Khan, M.U.; Hassan, G.; Awais, M.; Bae, J. All printed full range humidity sensor based on Fe2O3. Sens. Actuators, A 2020, 311, 112072. [Google Scholar] [CrossRef]
- Rauf, S.; Vijjapu, M.T.; Andres, M.A.; Gascon, I.; Roubeau, O.; Eddaoudi, M.; Salama, K.N. Highly selective metal-organic framework textile humidity sensor. ACS Appl. Mater. Interfaces 2020, 12, 29999–30006. [Google Scholar] [CrossRef]
- Sun, Q.; Wu, Z.; Cao, Y.; Guo, J.; Long, M.; Duan, H.; Jia, D. Chemiresistive sensor arrays based on noncovalently functionalized multi-walled carbon nanotubes for ozone detection. Sens. Actuators 2019, 297, 126689. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, H.; Zheng, W.; Wang, W.; Huang, H.; Wang, C.; MacDiarmid, A.G.; Wei, Y. Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers. J. Am. Chem. Soc. 2008, 130, 5036–5037. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wang, R.; Geng, W.; Li, X.; Qi, Q.; He, Y.; Wang, S. Study on humidity sensing properties based on composite materials of Li-doped mesoporous silica A-SBA-15. Sens. Actuators 2008, 128, 482–487. [Google Scholar] [CrossRef]
- Wang, J.; Wan, H.; Lin, Q. Properties of a nanocrystalline barium titanate on silicon humidity sensor. Meas. Sci. Technol. 2003, 14, 172–175. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, H.; Li, L.; Tuokedaerhan, K.; Jia, Z. Er-enhanced humidity sensing performance in black ZnO-based sensor. J. Alloys Compd. 2018, 744, 364–369. [Google Scholar] [CrossRef]
- Odeh, A.O. Oualitative and quantitative ATR-FTIR analysis and its application to coal char of different ranks. J. Fuel Chem. Technol. 2015, 43, 129–137. [Google Scholar] [CrossRef]
- Wan, W.; Li, Y.; Ren, X.; Zhao, Y.; Gao, F.; Zhao, H. 2D SnO2 Nanosheets: Synthesis, characterization, structures, and excellent sensing performance to ethylene glycol. Nanomaterials 2018, 8, 112. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Wu, Z.; Duan, H.; Jia, D. Detection of Triacetone Triperoxide (TATP) Precursors with an array of sensors based on MoS2/RGO composites. Sensors 2019, 19, 1281. [Google Scholar] [CrossRef] [Green Version]
- Zhong, S.-L.; Xu, R.; Wang, L.; Li, Y.; Zhang, L.-F. CuSn(OH)6 submicrospheres: Room-temperature synthesis, growth mechanism, and weak antiferromagnetic behavior. Mater. Res. Bull. 2011, 46, 2385–2391. [Google Scholar] [CrossRef]
- Agmon, N. The Grotthuss mechanism. Chem. Phys. Lett. 1995, 244, 456–462. [Google Scholar] [CrossRef]
- Zhang, D.Z.; Zong, X.Q.; Wu, Z.L.; Zhang, Y. Hierarchical self-assembled SnS2 nanoflower/Zn2SnO4 hollow sphere nanohybrid for humidity-sensing applications. ACS Appl. Mater. Interfaces 2018, 10, 32631–32639. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Zhang, M.; Yang, L.; Wu, R.; Wu, Z.; Jiang, Y.; Zhou, L.; Liu, Y. The Effect of Surface Hydroxyls on the Humidity-Sensitive Properties of LiCl-Doped ZnSn(OH)6 Sphere-Based Sensors. Nanomaterials 2022, 12, 467. https://doi.org/10.3390/nano12030467
Li Z, Zhang M, Yang L, Wu R, Wu Z, Jiang Y, Zhou L, Liu Y. The Effect of Surface Hydroxyls on the Humidity-Sensitive Properties of LiCl-Doped ZnSn(OH)6 Sphere-Based Sensors. Nanomaterials. 2022; 12(3):467. https://doi.org/10.3390/nano12030467
Chicago/Turabian StyleLi, Zhenjiang, Min Zhang, Linyu Yang, Rong Wu, Zhaofeng Wu, Youquan Jiang, Lina Zhou, and Yanan Liu. 2022. "The Effect of Surface Hydroxyls on the Humidity-Sensitive Properties of LiCl-Doped ZnSn(OH)6 Sphere-Based Sensors" Nanomaterials 12, no. 3: 467. https://doi.org/10.3390/nano12030467
APA StyleLi, Z., Zhang, M., Yang, L., Wu, R., Wu, Z., Jiang, Y., Zhou, L., & Liu, Y. (2022). The Effect of Surface Hydroxyls on the Humidity-Sensitive Properties of LiCl-Doped ZnSn(OH)6 Sphere-Based Sensors. Nanomaterials, 12(3), 467. https://doi.org/10.3390/nano12030467