Enhancement of Ferroelectricity in 5 nm Metal-Ferroelectric-Insulator Technologies by Using a Strained TiN Electrode
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Müller, J.; Böscke, T.S.; Müller, S.; Yurchuk, E.; Polakowski, P.; Paul, J.; Martin, D.; Schenk, T.; Khullar, K.; Kersch, A.; et al. Ferroelectric hafnium oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories. In Proceedings of the 2013 IEEE International Electron Devices Meeting, Washington, DC, USA, 9–11 December 2013; pp. 10.8.1–10.8.4. [Google Scholar]
- Böscke, T.S.; Müller, J.; Bräuhaus, D.; Schröder, U.; Böttger, U. Ferroelectricity in Hafnium Oxide Thin Films. Appl. Phys. Lett. 2011, 99, 102903. [Google Scholar] [CrossRef]
- Toriumi, A.; Xu, L.; Mori, Y.; Tian, X.; Lomenzo, P.D.; Mulaosmanovic, H.; Materano, M.; Mikolajick, T.; Schroeder, U. Material perspectives of HfO2-based ferroelectric films for device applications. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 15.1.1–15.1.4. [Google Scholar]
- Kim, S.J.; Mohan, J.; Lee, J.; Lee, J.S.; Lucero, A.T.; Young, C.D.; Colombo, L.; Summerfelt, S.R.; San, T.; Kim, J. Effect of film thickness on the ferroelectric and dielectric properties of low-temperature (400 °C) Hf0.5Zr0.5O2 films. Appl. Phys. Lett. 2018, 112, 172902. [Google Scholar] [CrossRef]
- Goh, Y.; Jeon, S. The effect of the bottom electrode on ferroelectric tunnel junctions based on CMOS-compatible HfO2. Nanotechnology 2018, 29, 335201. [Google Scholar] [CrossRef] [PubMed]
- Cao, R.; Wang, Y.; Zhao, S.; Yang, Y.; Zhao, X.; Wang, W.; Zhang, X.; Lv, H.; Liu, Q.; Liu, M. Effects of Capping Electrode on Ferroelectric Properties of Hf0.5Zr0.5O2 Thin Films. IEEE Electron Device Lett. 2018, 39, 1207–1210. [Google Scholar] [CrossRef]
- Lin, Y.-D.; Lee, H.-Y.; Tang, Y.-T.; Yeh, P.-C.; Yang, H.-Y.; Yeh, P.-S.; Wang, C.-Y.; Su, J.-W.; Li, S.-H.; Sheu, S.-S.; et al. 3D Scalable, Wake-up Free, and Highly Reliable FRAM Technology with Stress-Engineered HfZrOx. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 15.3.1–15.3.4. [Google Scholar]
- Lemme, M.C.; Efavi, J.K.; Mollenhauer, T.; Schmidt, M.; Gottlob, H.D.B.; Wahlbrink, T.; Kurz, H. Nanoscale TiN metal gate technology for CMOS integration. Microelectron. Eng. 2006, 83, 1551–1554. [Google Scholar] [CrossRef]
- Tay, B.K.; Shi, X.; Yang, H.S.; Tan, H.S.; Chua, D.; Teo, S.Y. The effect of deposition conditions on the properties of TiN thin films prepared by filtered cathodic vacuum-arc technique. Surf. Coat. Technol. 1999, 111, 229–233. [Google Scholar] [CrossRef]
- Goh, Y.; Cho, S.H.; Park, S.H.K.; Jeon, S. Crystalline Phase-Controlled High-Quality Hafnia Ferroelectric with RuO2 Electrode. IEEE Trans. Electron Devices 2020, 67, 3431. [Google Scholar] [CrossRef]
- Chaplin, B.P.; Wyle, I.; Zeng, H.; Carlisle, J.A.; Farrell, J. Characterization of the performance and failure mechanisms of boron-doped ultrananocrystalline diamond electrodes. J. Appl. Electrochem. 2011, 41, 1329. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Su, C.-J.; Yang, T.-H.; Hu, C.; Wu, T.-L. Improved TDDB Reliability and Interface States in 5-nm Hf0.5Zr0.5O2 Ferroelectric Technologies Using NH3 Plasma and Microwave Annealing. IEEE Trans. Electron Devices 2020, 67, 1581–1585. [Google Scholar] [CrossRef]
- Park, M.H.; Lee, Y.H.; Kim, H.J.; Kim, Y.J.; Moon, T.; Kim, K.D.; Müller, J.; Kersch, A.; Schroeder, U.; Mikolajick, T.; et al. Ferroelectricity and Antiferroelectricity of Doped Thin HfO2-Based Films. Adv. Mater. 2015, 27, 1811–1831. [Google Scholar] [CrossRef] [PubMed]
- Florent, K.; Lavizzari, S.; Di Piazza, L.; Popovici, M.; Duan, J.; Groeseneken, G.; Van Houdt, J. Reliability Study of Ferroelectric Al:HfO2 Thin Films for DRAM and NAND Applications. IEEE Trans. Electron Devices 2017, 64, 4091–4098. [Google Scholar] [CrossRef]
- Florent, K.; Subirats, A.; Lavizzari, S.; Degraeve, R.; Celano, U.; Kaczer, B.; Di Piazza, L.; Popovici, M.; Groeseneken, G.; Van Houdt, J. Investigation of the endurance of FE-HfO2 devices by means of TDDB studies. In Proceedings of the 2018 IEEE International Reliability Physics Symposium (IRPS), Burlingame, CA, USA, 11–15 March 2018. [Google Scholar]
- Zhou, D.; Müller, J.; Xu, J.; Knebel, S.; Bräuhaus, D.; Schröder, U. Insights into electrical characteristics of silicon doped hafnium oxide ferroelectric thin films. Appl. Phys. Lett. 2012, 100, 82905. [Google Scholar]
- Li, K.-S.; Chen, P.-G.; Lai, T.-Y.; Lin, C.-H.; Cheng, C.-C.; Chen, C.-C.; Wei, Y.-J.; Hou, Y.-F.; Liao, M.-H.; Lee, M.-H.; et al. Sub-60mV-swing negative-capacitance FinFET without hysteresis. In Proceedings of the 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 7–9 December 2015; pp. 22.6.1–22.6.4. [Google Scholar]
- Chen, Y.-H.; Su, C.-J.; Hu, C.; Wu, T.-L. Effects of Annealing on Ferroelectric Hafnium–Zirconium–Oxide-Based Transistor Technology. IEEE Electron Device Lett. 2019, 40, 467–470. [Google Scholar] [CrossRef]
- Mulaosmanovic, H.; Ocker, J.; Müller, S.; Schroeder, U.; Müller, J.; Polakowski, P.; Flachowsky, S.; van Bentum, R.; Mikolajick, T.; Slesazeck, S. Switching Kinetics in Nanoscale Hafnium Oxide Based Ferroelectric Field-Effect Transistors. ACS Appl. Mater. Interfaces 2017, 9, 3792–3798. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Liu, C.; Peng, Y.; Zheng, S.; Feng, Q.; Zhang, C.; Zhang, J.; Hao, Y.; Liao, M.; Zhou, Y. Performance Improvement of Hf0.5Zr0.5O2-Based Ferroelectric-Field-Effect Transistors With ZrO2 Seed Layers. IEEE Electron Device Lett. 2019, 40, 714–717. [Google Scholar] [CrossRef]
N2 | Ar | DC Power | Pressure | |
---|---|---|---|---|
Sample A | 30 (sccm) | 30 (sccm) | 5000 (w) | 3 (mtorr) |
Sample B | 1 (sccm) | 100 (sccm) | 800 (w) | 5 (mtorr) |
Ref [4] | Ref [5] | Ref [6] | This work | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Structure | MFM | MFM | MFS | MFS | MFS | MFM | MFIS | |||||||
Ferroelectric layer | 10 nm HZO | 8 nm HZO | 10 nm HZO | 5 nm HZO | ||||||||||
Stressor | Different thickness of top electrodes (TiN) | Different materials of bottom electrodes | Different materials of top electrodes | Different N content in TiN | ||||||||||
Parameter | 45 nm | 90 nm | 180 nm | TiN | Si | SiGe | Ge | Au | Pt | TiN | Ta | W | 18% N in TiN | 41% N in TiN |
2Pr (μC/cm2) | 35 | 52 | 48 | 32 | none | 24 | 36 | 23 | 32 | 36 | 36 | 38 | 8 | 3.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.-H.; Wang, K.-C.; Wang, Y.-Y.; Hu, C.; Su, C.-J.; Wu, T.-L. Enhancement of Ferroelectricity in 5 nm Metal-Ferroelectric-Insulator Technologies by Using a Strained TiN Electrode. Nanomaterials 2022, 12, 468. https://doi.org/10.3390/nano12030468
Wu C-H, Wang K-C, Wang Y-Y, Hu C, Su C-J, Wu T-L. Enhancement of Ferroelectricity in 5 nm Metal-Ferroelectric-Insulator Technologies by Using a Strained TiN Electrode. Nanomaterials. 2022; 12(3):468. https://doi.org/10.3390/nano12030468
Chicago/Turabian StyleWu, Cheng-Hung, Kuan-Chi Wang, Yu-Yun Wang, Chenming Hu, Chun-Jung Su, and Tian-Li Wu. 2022. "Enhancement of Ferroelectricity in 5 nm Metal-Ferroelectric-Insulator Technologies by Using a Strained TiN Electrode" Nanomaterials 12, no. 3: 468. https://doi.org/10.3390/nano12030468
APA StyleWu, C. -H., Wang, K. -C., Wang, Y. -Y., Hu, C., Su, C. -J., & Wu, T. -L. (2022). Enhancement of Ferroelectricity in 5 nm Metal-Ferroelectric-Insulator Technologies by Using a Strained TiN Electrode. Nanomaterials, 12(3), 468. https://doi.org/10.3390/nano12030468