Coherent Integration of Organic Gel Polymer Electrolyte and Ambipolar Polyoxometalate Hybrid Nanocomposite Electrode in a Compact High-Performance Supercapacitor
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of Gel Electrolytes
2.3. Synthesis of Hybrid Materials
2.4. Preparation of Electrodes
2.5. Characterization
3. Results and Discussion
3.1. Evaluation and Optimization of GPE
3.2. Evaluation of the Hybrid Material
3.3. Evaluation of Symmetric Devices
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dubal, D.P.; Chodankar, N.R.; Kim, D.-H.; Gomez-Romero, P. Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem. Soc. Rev. 2018, 47, 2065–2129. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Zhang, G.; Rawach, D.; Fu, C.; Wang, C.; Liu, X.; Dubois, M.; Lai, C.; Sun, S. Polymer gel electrolytes for flexible supercapacitors: Recent progress, challenges, and perspectives. Energy Storage Mater. 2021, 34, 320–355. [Google Scholar] [CrossRef]
- Vinoth, S.; Kanimozhi, G.; Narsimulu, D.; Kumar, H.; Srinadhu, E.; Satyanarayana, N. Ionic relaxation of electrospun nanocomposite polymer-blend quasi-solid electrolyte for high photovoltaic performance of Dye-sensitized solar cells. Mater. Chem. Phys. 2020, 250, 122945. [Google Scholar] [CrossRef]
- Xu, P.; Chen, H.; Zhou, X.; Xiang, H. Gel polymer electrolyte based on pvdf-hfp matrix composited with rGO-PEG-NH2 for high-performance lithium ion battery. J. Membr. Sci. 2021, 617, 118660. [Google Scholar] [CrossRef]
- Jie, J.; Liu, Y.; Cong, L.; Zhang, B.; Lu, W.; Zhang, X.; Liu, J.; Xie, H.; Sun, L. High-performance PVDF-HFP based gel polymer electrolyte with a safe solvent in Li metal polymer battery. J. Energy Chem. 2020, 49, 80–88. [Google Scholar] [CrossRef]
- Yadav, N.; Hashmi, S.A. Energy enhancement of quasi-solid-state supercapacitors based on a non-aqueous gel polymer electrolyte via a synergistic effect of dual redox additives diphenylamine and potassium iodide. J. Mater. Chem. A 2020, 8, 18266–18279. [Google Scholar] [CrossRef]
- Fan, L.-Q.; Tu, Q.-M.; Geng, C.-L.; Huang, J.-L.; Gu, Y.; Lin, J.-M.; Huang, Y.-F.; Wu, J.-H. High energy density and low self-discharge of a quasi-solid-state supercapacitor with carbon nanotubes incorporated redox-active ionic liquid-based gel polymer electrolyte. Electrochim. Acta 2020, 331, 135425. [Google Scholar] [CrossRef]
- Peng, H.; Yao, B.; Wei, X.; Liu, T.; Kou, T.; Xiao, P.; Zhang, Y.; Li, Y. Pore and Heteroatom Engineered Carbon Foams for Supercapacitors. Adv. Energy Mater. 2019, 9, 9. [Google Scholar] [CrossRef]
- Chulliyote, R.; Hareendrakrishnakumar, H.; Joseph, M.G. Template free one pot synthesis of heteroatom doped porous Carbon Electrodes for High performance symmetric supercapacitor. Electrochim. Acta 2020, 337, 135698. [Google Scholar] [CrossRef]
- Horn, M.R.; Singh, A.; Alomari, S.; Goberna-Ferrón, S.; Benages-Vilau, R.; Chodankar, N.; Motta, N.; Ostrikov, K.K.; MacLeod, J.; Sonar, P.; et al. Polyoxometalates (POMs): From electroactive clusters to energy materials. Energy Environ. Sci. 2021, 14, 1652–1700. [Google Scholar] [CrossRef]
- Zhu, J.-J.; Benages-Vilau, R.; Gomez-Romero, P. Can polyoxometalates enhance the capacitance and energy density of activated carbon in organic electrolyte supercapacitors? Electrochim. Acta 2020, 362, 137007. [Google Scholar] [CrossRef]
- Suárez-Guevara, J.; Ruiz, V.; Gomez-Romero, P. Hybrid energy storage: High voltage aqueous supercapacitors based on activated carbon–phosphotungstate hybrid materials. J. Mater. Chem. A 2014, 2, 1014–1021. [Google Scholar] [CrossRef]
- Dubal, D.P.; Rueda-Garcia, D.; Marchante, C.; Benages, R.; Gomez-Romero, P. Hybrid Graphene-Polyoxometalates Nanofluids as Liquid Electrodes for Dual Energy Storage in Novel Flow Cells. Chem. Rec. 2018, 18, 1076–1084. [Google Scholar] [CrossRef] [Green Version]
- Dubal, D.P.; Chodankar, N.R.; Vinu, A.; Kim, D.-H.; Gomez-Romero, P. Asymmetric Supercapacitors Based on Reduced Graphene Oxide with Different Polyoxometalates as Positive and Negative Electrodes. ChemSusChem 2017, 10, 2742–2750. [Google Scholar] [CrossRef]
- Dubal, D.P.; Suarez-Guevara, J.; Tonti, D.; Enciso, E.; Gomez-Romero, P. A high voltage solid state symmetric supercapacitor based on graphene–polyoxometalate hybrid electrodes with a hydroquinone doped hybrid gel-electrolyte. J. Mater. Chem. A 2015, 3, 23483–23492. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Y.; Zhang, T.; Li, Y.; Cui, M.; Cao, X.; Lu, Y.; Peng, D.; Liu, W.; Liu, X.; et al. Confinement of single polyoxometalate clusters in molecular-scale cages for improved flexible solid-state supercapacitors. Nanoscale 2020, 12, 11887–11898. [Google Scholar] [CrossRef]
- Hu, J.; Ji, Y.; Chen, W.; Streb, C.; Song, Y.-F. “Wiring” redox-active polyoxometalates to carbon nanotubes using a sonication-driven periodic functionalization strategy. Energy Environ. Sci. 2016, 9, 1095–1101. [Google Scholar] [CrossRef] [Green Version]
- Cui, L.; Yu, K.; Lv, J.; Guo, C.; Zhou, B. A 3d pomof based on a {asw12} cluster and a Ag-MOF with interpenetrating channels for large-capacity aqueous asymmetric supercapacitors and highly selective biosensors for the detection of hydrogen peroxide. J. Mater. Chem. A 2020, 8, 22918–22928. [Google Scholar] [CrossRef]
- Osaka, T.; Liu, X.; Nojima, M.; Momma, T. An Electrochemical Double Layer Capacitor Using an Activated Carbon Electrode with Gel Electrolyte Binder. J. Electrochem. Soc. 1999, 146, 1724–1729. [Google Scholar] [CrossRef]
- Martins, V.L.; Rennie, A.J.R.; Lesowiec, J.; Torresi, R.M.; Hall, P.J. Using Polymeric Ionic Liquids as an Active Binder in Supercapacitors. J. Electrochem. Soc. 2017, 164, A3253–A3258. [Google Scholar] [CrossRef] [Green Version]
- Fan, L.-Q.; Tu, Q.-M.; Geng, C.-L.; Wang, Y.-L.; Sun, S.-J.; Huang, Y.-F.; Wu, J.-H. Improved redox-active ionic liquid-based ionogel electrolyte by introducing carbon nanotubes for application in all-solid-state supercapacitors. Int. J. Hydrog. Energy 2020, 45, 17131–17139. [Google Scholar] [CrossRef]
- Bhat, M.; Yadav, N.; Hashmi, S. Pinecone-derived porous activated carbon for high performance all-solid-state electrical double layer capacitors fabricated with flexible gel polymer electrolytes. Electrochim. Acta 2019, 304, 94–108. [Google Scholar] [CrossRef]
- Zhong, C.; Deng, Y.; Hu, W.; Qiao, J.; Zhang, L.; Zhang, J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 2015, 44, 7484–7539. [Google Scholar] [CrossRef]
- Yong, H.; Park, H.; Jung, C. Quasi-solid-state gel polymer electrolyte for a wide temperature range application of acetonitrile-based supercapacitors. J. Power Sources 2020, 447, 227390. [Google Scholar] [CrossRef]
- Diard, J.-P.; Montella, C. Diffusion-trapping impedance under restricted linear diffusion conditions. J. Electroanal. Chem. 2003, 557, 19–36. [Google Scholar] [CrossRef]
- Jacobsen, T.; West, K. Diffusion impedance in planar, cylindrical and spherical symmetry. Electrochim. Acta 1995, 40, 255–262. [Google Scholar] [CrossRef]
- Huang, J. Diffusion impedance of electroactive materials, electrolytic solutions and porous electrodes: Warburg impedance and beyond. Electrochim. Acta 2018, 281, 170–188. [Google Scholar] [CrossRef]
- Cheng, F.; Yang, X.; Zhang, S.; Lu, W. Boosting the supercapacitor performances of activated carbon with carbon nanomaterials. J. Power Sources 2020, 450, 450. [Google Scholar] [CrossRef]
- Gamby, J.; Taberna, P.; Simon, P.; Fauvarque, J.; Chesneau, M. Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources 2001, 101, 109–116. [Google Scholar] [CrossRef]
- Suárez-Guevara, J.; Ruiz, V.; Gómez-Romero, P. Stable graphene–polyoxometalate nanomaterials for application in hybrid supercapacitors. Phys. Chem. Chem. Phys. 2014, 16, 20411–20414. [Google Scholar] [CrossRef]
- Chai, D.; Hou, Y.; O’Halloran, K.P.; Pang, H.; Ma, H.; Wang, G.; Wang, X. Enhancing Energy Storage via TEA-Dependent Controlled Syntheses: Two Series of Polyoxometalate-Based Inorganic-Organic Hybrids and their Supercapacitor Properties. ChemElectroChem 2018, 5, 3443–3450. [Google Scholar] [CrossRef]
Cells | State | Rs/Ω | Cdl/mF | Rct/Ω | Ws-R/Ω | Ws-T/s | Ws-P |
---|---|---|---|---|---|---|---|
5 μm | fresh | 1.12 | 1.83 | 15.78 | 10.03 | 0.21 | 0.85 |
activated | 1.08 | 3.76 | 6.51 | 1.46 | 0.04 | 0.87 | |
12 μm | fresh | 1.87 | 1.93 | 32.16 | 22.01 | 0.32 | 0.74 |
activated | 0.83 | 4.17 | 3.23 | 2.10 | 0.06 | 0.83 | |
36 μm | fresh | 0.89 | 2.32 | 44.24 | 29.7 | 0.42 | 0.74 |
activated | 1.08 | 3.54 | 6.53 | 1.63 | 0.03 | 0.84 | |
Cellulose | fresh | 2.13 | 2.81 | 29.44 | 7.60 | 0.04 | 0.69 |
activated | 2.14 | 4.36 | 28.83 | 9.48 | 0.06 | 0.66 | |
Celgard | fresh | 2.09 | 1.55 | 31.23 | 91.56 | 0.13 | 0.58 |
activated | 2.23 | 1.19 | 42.62 | 45.47 | 0.05 | 0.54 |
Re1 | Ox1 | Re2 | Ox2 | Re3 | Ox3 | Re4 | Ox4 | |
---|---|---|---|---|---|---|---|---|
b | 0.932 | 0.967 | 0.990 | 1.000 | 0.999 | 0.998 | 0.988 | 0.960 |
R2 | 0.997 | 0.999 | 0.997 | 0.999 | 0.997 | 0.999 | 0.998 | 0.999 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.-J.; Martinez-Soria, L.; Gomez-Romero, P. Coherent Integration of Organic Gel Polymer Electrolyte and Ambipolar Polyoxometalate Hybrid Nanocomposite Electrode in a Compact High-Performance Supercapacitor. Nanomaterials 2022, 12, 514. https://doi.org/10.3390/nano12030514
Zhu J-J, Martinez-Soria L, Gomez-Romero P. Coherent Integration of Organic Gel Polymer Electrolyte and Ambipolar Polyoxometalate Hybrid Nanocomposite Electrode in a Compact High-Performance Supercapacitor. Nanomaterials. 2022; 12(3):514. https://doi.org/10.3390/nano12030514
Chicago/Turabian StyleZhu, Jun-Jie, Luis Martinez-Soria, and Pedro Gomez-Romero. 2022. "Coherent Integration of Organic Gel Polymer Electrolyte and Ambipolar Polyoxometalate Hybrid Nanocomposite Electrode in a Compact High-Performance Supercapacitor" Nanomaterials 12, no. 3: 514. https://doi.org/10.3390/nano12030514
APA StyleZhu, J. -J., Martinez-Soria, L., & Gomez-Romero, P. (2022). Coherent Integration of Organic Gel Polymer Electrolyte and Ambipolar Polyoxometalate Hybrid Nanocomposite Electrode in a Compact High-Performance Supercapacitor. Nanomaterials, 12(3), 514. https://doi.org/10.3390/nano12030514