Effect of the Carbon Support and Conditions on the Carbothermal Synthesis of Cu-Molybdenum Carbide and Its Application on CO2 Hydrogenation to Methanol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Catalysts Synthesis
2.2. Characterization
2.3. Reaction
- ni: number of carbon atoms of product i.
- moli: number of moles of product i.
- mol CO2-un: mol of unreacted CO2.
3. Results
3.1. Effect of the Support and Synthesis Conditions on the Molybdenum Crystal Phases
3.2. Reaction Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Chi, H.; Andolina, C.M.; Li, J.; Curnan, M.T.; Saidi, W.A.; Zhou, G.; Veser, G. Dependence of H2 and CO2 selectivity on Cu oxidation state during partial oxidation of methanol on Cu/ZnO. Appl. Catal. A 2018, 556, 64–72. [Google Scholar] [CrossRef]
- González-Garay, A.; Frei, M.S.; Al-Qahtani, A.; Mondelli, C.; Guillén-Gosálbez, G.; Pérez-Ramírez, J. Plant-to-planet analysis of CO2-based methanol processes. Energy Environ. Sci. 2019, 12, 3425–3436. [Google Scholar] [CrossRef] [Green Version]
- Olah, G.A. Beyond Oil and Gas: The Methanol Economy. Angew. Chem. Int. Ed. 2005, 44, 2636–2639. [Google Scholar] [CrossRef] [PubMed]
- Carrales-Alvarado, D.H.; Dongil, A.B.; Fernández-Morales, J.M.; Fernández-García, M.; Guerrero-Ruiz, A.; Rodríguez-Ramos, I. Selective hydrogen production from formic acid decomposition over Mo carbides supported on carbon materials. Catal. Sci. Technol. 2020, 10, 6790–6799. [Google Scholar] [CrossRef]
- Chen, Y.; Choi, S.; Thompson, L.T. Low temperature CO2 hydrogenation to alcohols and hydrocarbons over Mo2C supported metal catalysts. J. Catal. 2016, 343, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Dongil, A.B.; Conesa, J.M.; Pastor-Pérez, L.; Sepúlveda-Escribano, A.; Guerrero-Ruiz, A.; Rodríguez-Ramos, I. Carbothermally generated copper–molybdenum carbide supported on graphite for the CO2 hydrogenation to methanol. Catal. Sci. Technol. 2021, 11, 4051–4059. [Google Scholar] [CrossRef]
- Guil-López, R.; Nieto, E.; Botas, J.A.; Fierro, J.L.G. On the genesis of molybdenum carbide phases during reduction-carburization reactions. J. Solid State Chem. 2012, 190, 285–295. [Google Scholar] [CrossRef]
- Blanco, E.; Dongil, A.B.; García-Fierro, J.L.; Escalona, N. Insights in supported rhenium carbide catalysts for hydroconversion of lignin-derived compounds. Appl. Catal. A 2020, 599, 117600. [Google Scholar] [CrossRef]
- Cao, J.; Wang, J.; Ma, Y.; Li, X.; Xiaokaiti, P.; Hao, X.; Guan, G. Hydrogen production from formic acid over morphology-controllable molybdenum carbide catalysts. J. Alloys Compd. 2018, 735, 1463–1471. [Google Scholar] [CrossRef]
- Huang, T.; Huang, W.; Huang, J.; Ji, P. Methane reforming reaction with carbon dioxide over SBA-15 supported Ni–Mo bimetallic catalysts. Fuel Process. Technol. 2011, 92, 1868–1875. [Google Scholar] [CrossRef]
- Yao, Z.; Jiang, J.; Zhao, Y.; Luan, F.; Zhu, J.; Shi, Y.; Wang, H. Insights into the deactivation mechanism of metal carbide catalysts for dry reforming of methane via comparison of nickel-modified molybdenum and tungsten carbides. RSC Adv. 2016, 6, 19944–19951. [Google Scholar] [CrossRef]
- Yao, Z.; Luan, F.; Sun, Y.; Jiang, B.; Song, J.; Wang, H. Molybdenum phosphide as a novel and stable catalyst for dry reforming of methane. Catal. Sci. Technol. 2016, 6, 7996–8004. [Google Scholar] [CrossRef]
- Liang, P.; Gao, H.; Yao, Z.; Jia, R.; Shi, Y.; Sun, Y.; Wang, H. Simple synthesis of ultrasmall β-Mo2C and α-MoC1−x nanoparticles and new insights into their catalytic mechanisms for dry reforming of methane. Catal. Sci. Technol. 2017, 7, 3312–3324. [Google Scholar] [CrossRef]
- Souza Macedo, L.; Oliveira, R.R.; van Haasterecht, T.; Teixeira da Silva, V.; Bitter, H. Influence of synthesis method on molybdenum carbide crystal structure and catalytic performance in stearic acid hydrodeoxygenation. Appl. Catal. B 2019, 241, 81–88. [Google Scholar] [CrossRef]
- Xu, W.; Ramirez, P.J.; Stacchiola, D.; Rodriguez, J.A. Synthesis of α-MoC1-x and β-MoCy Catalysts for CO2 Hydrogenation by Thermal Carburization of Mo-oxide in Hydrocarbon and Hydrogen Mixtures. Catal. Lett. 2014, 144, 1418–1424. [Google Scholar] [CrossRef]
- Blanco, E.; Aguirre-Abarca, D.A.; Díaz de León, J.N.; Escalona, N. Relevant aspects of the conversion of guaiacol as a model compound for bio-oil over supported molybdenum oxycarbide catalysts. New J. Chem. 2020, 44, 12027–12035. [Google Scholar] [CrossRef]
- Ramirez-Barria, C.S.; Fernandes, D.M.; Freire, C.; Villaro-Abalos, E.; Guerrero-Ruiz, A.; Rodríguez-Ramos, I. Upgrading the Properties of Reduced Graphene Oxide and Nitrogen-Doped Reduced Graphene Oxide Produced by Thermal Reduction toward Efficient ORR Electrocatalysts. Nanomaterials 2019, 9, 1761. [Google Scholar] [CrossRef] [Green Version]
- Mordenti, D.; Brodzki, D.; Djéga-Mariadassou, G. New Synthesis of Mo2C 14 nm in Average Size Supported on a High Specific Surface Area Carbon Material. J. Solid State Chem. 1998, 141, 114–120. [Google Scholar] [CrossRef]
- Hanif, A.; Xiao, T.; York, A.P.E.; Sloan, J.; Green, M.L.H. Study on the Structure and Formation Mechanism of Molybdenum Carbides. Chem. Mater. 2002, 14, 1009–1015. [Google Scholar] [CrossRef]
- Oyama, S.T.; Delporte, P.; Pham-Huu, C.; Ledoux, M.J. Tentative Structure of Molybdenum Oxycarbide. Chem. Lett. 1997, 26, 949–950. [Google Scholar] [CrossRef]
- Shen, H.; Liu, G.; Zhao, Y.; Li, D.; Jiang, J.; Ding, J.; Shi, W. Artificial all-solid-state system by RGO bridged Cu2O and Bi2WO6 for Z-scheme H2 production and tetracycline degradation. Fuel 2020, 259, 116311. [Google Scholar] [CrossRef]
- Ding, J.; Yan, X.; Tay, B.K.; Xue, Q. One-step synthesis of pure Cu nanowire/carbon nanotube coaxial nanocables with different structures by arc discharge. J. Phys. Chem. Solids 2011, 72, 1519–1523. [Google Scholar] [CrossRef]
- Nowakowska-Langier, K.; Chodun, R.; Minikayev, R.; Okrasa, S.; Strzelecki, G.W.; Wicher, B.; Zdunek, K. Copper nitride layers synthesized by pulsed magnetron sputtering. Thin Solid Film. 2018, 645, 32–37. [Google Scholar] [CrossRef]
- Zhang, Q.; Pastor-Pérez, L.; Jin, W.; Gu, S.; Reina, T.R. Understanding the promoter effect of Cu and Cs over highly effective β-Mo2C catalysts for the reverse water-gas shift reaction. Appl. Catal. B 2019, 244, 889–898. [Google Scholar] [CrossRef]
- Ochoa, E.; Torres, D.; Moreira, R.; Pinilla, J.L.; Suelves, I. Carbon nanofiber supported Mo2C catalysts for hydrodeoxygenation of guaiacol: The importance of the carburization process. Appl. Catal. B 2018, 239, 463–474. [Google Scholar] [CrossRef]
- Frank, B.; Friedel, K.; Girgsdies, F.; Huang, X.; Schlögl, R.; Trunschke, A. CNT-Supported MoxC Catalysts: Effect of Loading and Carburization Parameters. ChemCatChem 2013, 5, 2296–2305. [Google Scholar] [CrossRef]
- Geng, W.; Han, H.; Liu, F.; Liu, X.; Xiao, L.; Wu, W. N,P,S-codoped C@nano-Mo2C as an efficient catalyst for high selective synthesis of methanol from CO2 hydrogenation. J. CO2 Util 2017, 21, 64–71. [Google Scholar] [CrossRef]
- Porosoff, M.D.; Yang, X.; Boscoboinik, J.A.; Chen, J.G. Molybdenum Carbide as Alternative Catalysts to Precious Metals for Highly Selective Reduction of CO2 to CO. Angew. Chem. Int. Ed. 2014, 53, 6705–6709. [Google Scholar] [CrossRef]
- Tominaga, H.; Nagai, M. Density functional study of carbon dioxide hydrogenation on molybdenum carbide and metal. Appl. Catal. A 2005, 282, 5–13. [Google Scholar] [CrossRef]
- Posada-Pérez, S.; Ramírez, P.J.; Gutiérrez, R.A.; Stacchiola, D.J.; Viñes, F.; Liu, P.; Rodriguez, J.A. The conversion of CO2 to methanol on orthorhombic β-Mo2C and Cu/β-Mo2C catalysts: Mechanism for admetal induced change in the selectivity and activity. Catal. Sci. Technol. 2016, 6, 6766–6777. [Google Scholar] [CrossRef]
- Kim, J.; Sarma, B.B.; Andrés, E.; Pfänder, N.; Concepción, P.; Prieto, G. Surface Lewis Acidity of Periphery Oxide Species as a General Kinetic Descriptor for CO2 Hydrogenation to Methanol on Supported Copper Nanoparticles. ACS Catal. 2019, 9, 10409–10417. [Google Scholar] [CrossRef] [Green Version]
- Din, I.U.; Shaharun, M.S.; Naeem, A.; Tasleem, S.; Ahmad, P. Revalorization of CO2 for methanol production via ZnO promoted carbon nanofibers based Cu-ZrO2 catalytic hydrogenation. J. Eng. Chem. 2019, 39, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.; Xu, C.-H.; Zhao, H.-Y.; Wang, Y.-X.; Liu, J.; Liu, J.-Y. Methanol synthesis from CO2 hydrogenation over Cu/γ-Al2O3 catalysts modified by ZnO, ZrO2 and MgO. J. Ind. Eng. Chem. 2015, 28, 261–267. [Google Scholar] [CrossRef]
Catalyst | MoO3 | Mo2O5 | MoO2 | MoOxCy | MoxC | Mo0 | Mo/C | Cu/Mo |
---|---|---|---|---|---|---|---|---|
Mo+6 | Mo+5 | Mo+4 | Mo+δ | Mo+2 | ||||
CuMoxC/H550 | 232.4 (20) | - | - | 229.6 (34) | 228.6 (44) | - | 0.014 | 0.325 |
CuMoxC/H | - | 231.1 (10) | - | 229.4 (39) | 228.6 (51) | - | 0.013 | 0.231 |
CuMoxC/H-700 | 232.1 (19) | - | 229.6 (13) | 228.5 (22) | 227.9 (44) | 0.036 | 0.327 | |
CuMoxC/H-He | 232.4 (55) | 231.2 (33) | - | 229.6 (12) | - | - | 0.013 | 0.484 |
CuMoxC/H-700He | 232.6 (68) | 231.2 (6) | - | 229.4 (16) | 228.5 (10) | 0.010 | 0.216 | |
CuMoxC/rGO | 232.1 (19) | - | 230.4 (11) | 228.9 (32) | 228.2 (37) | - | 0.012 | 0.228 |
CuMoxC/CNT | 232.3 (17) | 231.0 (15) | - | 229.3 (39) | 228.4 (28) | - | 0.012 | 0.224 |
CuMoxC/H-PR | 232.4 (100) | - | - | - | - | - | 0.008 | 0.545 |
Catalyst | CH3OH Yield (μmol/s⋅g) |
---|---|
Cu/MoxC/H-500 | 0.182 |
Cu/MoxC/H-550 | 0.181 |
Cu/MoxC/H | 0.205 |
Cu/MoxC/H-700 | 0.150 |
Cu/MoxC/H-He | 0.053 |
Cu/MoxC/H-700He | 0.077 |
Cu/MoxC/CNT | 0.140 |
Cu/MoxC/GOr | 0.169 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dongil, A.B.; Blanco, E.; Villora-Picó, J.J.; Sepúlveda-Escribano, A.; Rodríguez-Ramos, I. Effect of the Carbon Support and Conditions on the Carbothermal Synthesis of Cu-Molybdenum Carbide and Its Application on CO2 Hydrogenation to Methanol. Nanomaterials 2022, 12, 1048. https://doi.org/10.3390/nano12071048
Dongil AB, Blanco E, Villora-Picó JJ, Sepúlveda-Escribano A, Rodríguez-Ramos I. Effect of the Carbon Support and Conditions on the Carbothermal Synthesis of Cu-Molybdenum Carbide and Its Application on CO2 Hydrogenation to Methanol. Nanomaterials. 2022; 12(7):1048. https://doi.org/10.3390/nano12071048
Chicago/Turabian StyleDongil, Ana Belén, Elodie Blanco, Juan José Villora-Picó, Antonio Sepúlveda-Escribano, and Inmaculada Rodríguez-Ramos. 2022. "Effect of the Carbon Support and Conditions on the Carbothermal Synthesis of Cu-Molybdenum Carbide and Its Application on CO2 Hydrogenation to Methanol" Nanomaterials 12, no. 7: 1048. https://doi.org/10.3390/nano12071048
APA StyleDongil, A. B., Blanco, E., Villora-Picó, J. J., Sepúlveda-Escribano, A., & Rodríguez-Ramos, I. (2022). Effect of the Carbon Support and Conditions on the Carbothermal Synthesis of Cu-Molybdenum Carbide and Its Application on CO2 Hydrogenation to Methanol. Nanomaterials, 12(7), 1048. https://doi.org/10.3390/nano12071048