Investigation of the Crystallization Characteristics of Intermediate States in Ge2Sb2Te5 Thin Films Induced by Nanosecond Multi-Pulsed Laser Irradiation
Abstract
:1. Introduction
2. Methods
2.1. Experiment
2.2. Simulation
3. Results and Discussion
3.1. Irradiation Region Characteristics
3.2. Laser-Induced Intermediate States
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wuttig, M.; Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 2007, 6, 824–832. [Google Scholar] [CrossRef] [PubMed]
- Alexoudi, T.; Kanellos, G.T.; Pleros, N. Optical RAM and integrated optical memories: A survey. Light Sci. Appl. 2020, 9, 91. [Google Scholar] [CrossRef]
- Alialy, S.; Gabriel, M.; Davitt, F.; Holmes, J.D.; Boland, J.J. Switching at the contacts in Ge9Sb1Te5 phase-change nanowire devices. Nanotechnology 2019, 30, 335706. [Google Scholar] [CrossRef] [PubMed]
- Ríos, C.; Stegmaier, M.; Hosseini, P.; Wang, D.; Scherer, T.; Wright, C.D.; Bhaskaran, H.; Pernice, W.H.P. Integrated all-photonic non-volatile multi-level memory. Nat. Photonics 2015, 9, 725–732. [Google Scholar] [CrossRef] [Green Version]
- Wuttig, M.; Bhaskaran, H.; Taubner, T. Phase-change materials for non-volatile photonic applications. Nat. Photonics 2017, 11, 465–476. [Google Scholar] [CrossRef]
- Wang, L.; Yang, C.; Wen, J.; Xiong, B. Amorphization Optimization of Ge(2)Sb(2)Te(5) Media for Electrical Probe Memory Applications. Nanomaterials 2018, 8, 368. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, P.; Wright, C.D.; Bhaskaran, H. An optoelectronic framework enabled by low-dimensional phase-change films. Nature 2014, 511, 206–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, K.; Wang, Y.; Jiang, M.; Wu, Y. Refractive index modulation of Sb70Te30 phase-change thin films by multiple femtosecond laser pulses. J. Appl. Phys. 2016, 119, 173105. [Google Scholar] [CrossRef]
- Zhang, W.; Mazzarello, R.; Wuttig, M.; Ma, E. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat. Rev. Mater. 2019, 4, 150–168. [Google Scholar] [CrossRef]
- De Galarreta, C.R.; Alexeev, A.M.; Au, Y.-Y.; Lopez-Garcia, M.; Klemm, M.; Cryan, M.; Bertolotti, J.; Wright, C.D. Nonvolatile Reconfigurable Phase-Change Metadevices for Beam Steering in the Near Infrared. Adv. Funct. Mater. 2018, 28, 1704993. [Google Scholar] [CrossRef] [Green Version]
- Shields, J.; Galarreta, C.R.; Bertolotti, J.; Wright, C.D. Enhanced Performance and Diffusion Robustness of Phase-Change Metasurfaces via a Hybrid Dielectric/Plasmonic Approach. Nanomaterials 2021, 11, 525. [Google Scholar] [CrossRef]
- Kang, Q.; Li, D.; Guo, K.; Gao, J.; Guo, Z. Tunable Thermal Camouflage Based on GST Plasmonic Metamaterial. Nanomaterials 2021, 11, 260. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, Y.; Hong, Q.; Xu, W.; Zhu, Z.; Yuan, X. Near-Infrared Rewritable, Non-Volatile Subwavelength Absorber Based on Chalcogenide Phase Change Materials. Nanomaterials 2020, 10, 1222. [Google Scholar] [CrossRef]
- Lankhorst, M.H.; Ketelaars, B.W.; Wolters, R.A. Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nat. Mater. 2005, 4, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Gan, S.X.; Lai, C.K.; Chong, W.Y.; Choi, D.Y.; Madden, S.; Ahmad, H. Optical phase transition of Ge2Sb2Se4Te1 thin film using low absorption wavelength in the 1550 nm window. Opt. Mater. 2021, 120, 111450. [Google Scholar] [CrossRef]
- Menazea, A.A.; Abdelghany, A.M. Precipitation of silver nanoparticle within silicate glassy matrix via Nd:YAG laser for biomedical applications. Radiat. Phys. Chem. 2020, 174, 108958. [Google Scholar] [CrossRef]
- Mostafa, A.M.; Menazea, A.A. Laser-assisted for preparation ZnO/CdO thin film prepared by pulsed laser deposition for catalytic degradation. Radiat. Phys. Chem. 2020, 176, 109020. [Google Scholar] [CrossRef]
- Hu, Y.; Zou, H.; Yuan, L.; Xue, J.; Sui, Y.; Wu, W.; Zhang, J.; Zhu, X.; Song, S.; Song, Z. Improved phase change behavior of Sb2Se material by Si addition for phase change memory. Scripta Mater. 2016, 115, 19–23. [Google Scholar] [CrossRef]
- Lee, T.H.; Loke, D.; Huang, K.J.; Wang, W.J.; Elliott, S.R. Tailoring transient-amorphous states: Towards fast and power-efficient phase-change memory and neuromorphic computing. Adv. Mater. 2014, 26, 7493–7498. [Google Scholar] [CrossRef] [Green Version]
- Weidenhof, V.; Friedrich, I.; Ziegler, S.; Wuttig, M. Laser induced crystallization of amorphous Ge2Sb2Te5 films. J. Appl. Phys. 2001, 89, 3168–3176. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, F.R.; Yang, J.F.; Fan, Z.K.; Liu, F.; Sun, N.X. A cross sectional study on the crystallization of amorphous Ge2Sb2Te5 films induced by a single-pulse ultraviolet laser. Opt. Laser Technol. 2016, 81, 100–106. [Google Scholar] [CrossRef]
- Kunkel, T.; Vorobyov, Y.; Smayev, M.; Lazarenko, P.; Veretennikov, V.; Sigaev, V.; Kozyukhin, S. Experimental observation of two-stage crystallization of Ge2Sb2Te5 amorphous thin films under the influence of a pulsed laser. J. Alloys Compd. 2021, 851, 156924. [Google Scholar] [CrossRef]
- Wang, G.; Li, C.; Shi, D.; Zhang, Y.; Shen, X. Laser-induced metastable phase in crystalline phase-change films by confocal Raman spectrometer. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2018, 205, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Fan, T.; Liu, F.R.; Li, W.Q.; Guo, J.C.; Wang, Y.H.; Sun, N.X.; Liu, F. Study on accumulated crystallization characteristics of amorphous Ge2Sb2Te5 induced by multi-pulsed laser irradiations with different fluences. Semicond. Sci. Technol. 2018, 33, 075009. [Google Scholar] [CrossRef]
- Yang, Q.; Cai, Z.; Wang, Y.; Huang, H.; Wu, Y. Controllable crystallization of Ge2Sb2Te5 phase-change memory thin films driven by multiple femtosecond laser pulses. Mater. Sci. Eng. B. 2015, 193, 189–197. [Google Scholar] [CrossRef]
- Sun, X.; Ehrhardt, M.; Lotnyk, A.; Lorenz, P.; Thelander, E.; Gerlach, J.W.; Smausz, T.; Decker, U.; Rauschenbach, B. Crystallization of Ge2Sb2Te5 thin films by nano- and femtosecond single laser pulse irradiation. Sci. Rep. 2016, 6, 28246. [Google Scholar] [CrossRef]
- Du, J.; Mu, Z.; Li, L.; Li, J. A Raman study on nanosecond-laser-induced multi-level switching of Ge2Sb2Te5 thin films. Opt. Laser Technol. 2021, 144, 107393. [Google Scholar] [CrossRef]
- Liu, F.R.; Han, X.X.; Bai, N.; Zhao, J.J.; Chen, J.M.; Lin, X. Numerical simulation on the temperature field induced by a nanosecond pulsed excimer laser in the phase-change film. Thin Solid Film. 2014, 551, 102–109. [Google Scholar] [CrossRef]
- Cao, T.; Wei, C.; Simpson, R.E.; Zhang, L.; Cryan, M.J. Rapid phase transition of a phase-change metamaterial perfect absorber. Opt. Mater. Express 2013, 3, 1101–1110. [Google Scholar] [CrossRef]
- García, O.; García-Ballesteros, J.J.; Munoz-Martin, D.; Núñez-Sánchez, S.; Morales, M.; Carabe, J.; Torres, I.; Gandía, J.J.; Molpeceres, C. Analysis of wavelength influence on a-Si crystallization processes with nanosecond laser sources. Appl. Surf. Sci. 2013, 278, 214–218. [Google Scholar] [CrossRef]
- Lee, J.; Bozorg-Grayeli, E.; Kim, S.; Asheghi, M.; Philip Wong, H.S.; Goodson, K.E. Phonon and electron transport through Ge2Sb2Te5 films and interfaces bounded by metals. Appl. Phys. Lett. 2013, 102, 191911. [Google Scholar] [CrossRef] [Green Version]
- Toshihisa, N.; Gentaro, O.; Yoshiharu, T.; Yuji, M.; Hideki, H. Crystal structure of GeTe and Ge2Sb2Te5 meta-stable phase. Thin Solid Film. 2000, 370, 258–261. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, K.; Li, D.; Guo, Y.; Pan, S. In situ AFM and Raman spectroscopy study of the crystallization behavior of Ge2Sb2Te5 films at different temperature. Appl. Surf. Sci. 2011, 258, 1619–1623. [Google Scholar] [CrossRef]
- Liu, F.R.; Bai, N.; Zhao, J.J.; Han, X.X.; Zhou, W.P.; Lin, X.; Sun, N.X. An explanation of the crystallization of amorphous Ge2Sb2Te5 films induced by a short Gaussian laser pulse. Appl. Phys. Lett. 2013, 103, 051905. [Google Scholar] [CrossRef]
- Leonid, V.; Lin, Z.; Dmitriy, S. Atomistic Modeling of Short Pulse Laser Ablation Connections between Melting Spallation and Phase Explosion†. J. Phys. Chem. C. 2009, 113, 11892–11906. [Google Scholar] [CrossRef] [Green Version]
- Kalb, J.; Spaepen, F.; Wuttig, M. Calorimetric measurements of phase transformations in thin films of amorphous Te alloys used for optical data storage. J. Appl. Phys. 2003, 93, 2389–2393. [Google Scholar] [CrossRef]
- Raoux, S.; Rettner, C.T.; Jordan-Sweet, J.L.; Kellock, A.J.; Topuria, T.; Rice, P.M.; Miller, D.C. Direct observation of amorphous to crystalline phase transitions in nanoparticle arrays of phase change materials. J. Appl. Phys. 2007, 102, 094305. [Google Scholar] [CrossRef]
- Kozyukhin, S.; Vorobyov, Y.; Sherchenkov, A.; Babich, A.; Vishnyakov, N.; Boytsova, O. Isothermal crystallization of Ge2Sb2Te5 amorphous thin films and estimation of information reliability of PCM cells. Phys. Status Solidi (A) 2016, 213, 1831–1838. [Google Scholar] [CrossRef]
- Němec, P.; Nazabal, V.; Moreac, A.; Gutwirth, J.; Beneš, L.; Frumar, M. Amorphous and crystallized Ge–Sb–Te thin films deposited by pulsed laser: Local structure using Raman scattering spectroscopy. Mater. Chem. Phys. 2012, 136, 935–941. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, C.; Wang, Z.; Wu, K.; Chong, H.; Ye, H. Optical constants acquisition and phase change properties of thin films based on spectroscopy. RSC. Adv. 2018, 8, 21040–21046. [Google Scholar] [CrossRef] [Green Version]
- Kolobov, A.V.; Fons, P.; Tominaga, J. Phase-change optical recording: Past, present, future. Thin Solid Film. 2007, 515, 7534–7537. [Google Scholar] [CrossRef]
- Han, Z.H.; Han, W.N.; Liu, F.R.; Han, Z.; Yuan, Y.P.; Cheng, Z.C. Ultrafast temporal-spatial dynamics of amorphous-to-crystalline phase transition in Ge2Sb2Te5 thin film triggered by multiple femtosecond laser pulses irradiation. Nanotechnology 2020, 31, 115706. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ríos, C.; Shalaginov, M.Y.; Li, M.; Majumdar, A.; Gu, T.; Hu, J. Myths and truths about optical phase change materials: A perspective. Appl. Phys. Lett. 2021, 118, 210501. [Google Scholar] [CrossRef]
- Wei, J.; Gan, F. Theoretical explanation of different crystallization processes between as-deposited and melt-quenched amorphous Ge2Sb2Te5 thin films. Thin Solid Film. 2003, 441, 292–297. [Google Scholar] [CrossRef]
Material | Density (kg/m3) | Thermal Conductivity (W/m∙K) | Specific Heat (J/kg∙K) |
---|---|---|---|
a-GST | 5860 | 0.25 | 228 |
c-GST | 6130 | 0.45 ± 0.09 | 240 |
c-Si | 2330 | 140 | 700 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, J.; Zhou, J.; Zhang, L.; Yang, N.; Ding, X.; Zhang, J. Investigation of the Crystallization Characteristics of Intermediate States in Ge2Sb2Te5 Thin Films Induced by Nanosecond Multi-Pulsed Laser Irradiation. Nanomaterials 2022, 12, 536. https://doi.org/10.3390/nano12030536
Du J, Zhou J, Zhang L, Yang N, Ding X, Zhang J. Investigation of the Crystallization Characteristics of Intermediate States in Ge2Sb2Te5 Thin Films Induced by Nanosecond Multi-Pulsed Laser Irradiation. Nanomaterials. 2022; 12(3):536. https://doi.org/10.3390/nano12030536
Chicago/Turabian StyleDu, Jia, Jun Zhou, Lianzhen Zhang, Na Yang, Xin Ding, and Jin Zhang. 2022. "Investigation of the Crystallization Characteristics of Intermediate States in Ge2Sb2Te5 Thin Films Induced by Nanosecond Multi-Pulsed Laser Irradiation" Nanomaterials 12, no. 3: 536. https://doi.org/10.3390/nano12030536
APA StyleDu, J., Zhou, J., Zhang, L., Yang, N., Ding, X., & Zhang, J. (2022). Investigation of the Crystallization Characteristics of Intermediate States in Ge2Sb2Te5 Thin Films Induced by Nanosecond Multi-Pulsed Laser Irradiation. Nanomaterials, 12(3), 536. https://doi.org/10.3390/nano12030536