A Light-Driven Integrated Bio-Capacitor with Single Nano-Channel Modulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Modeling
2.2. Device Construction
- SU-8 mold making:
- 2.
- Microfluidic chip production:
- 3.
- Integration of PDMS and Si3N4 wafer:
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berggren, M.; Richter-Dahlfors, A. Organic bioelectronics. Adv. Mater. 2007, 19, 3201–3213. [Google Scholar] [CrossRef]
- Someya, T.; Bao, Z.; Malliaras, G.G. The rise of plastic bioelectronics. Nature 2016, 540, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Szent-Györgyi, A. Bioelectronics: Intermolecular electron transfer may play a major role in biological regulation, defense, and cancer. Science 1968, 161, 988–990. [Google Scholar] [CrossRef] [PubMed]
- Willner, I.; Katz, E. Bioelectronics: From Theory to Applications; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Willner, I.; Willner, B. Biomaterials integrated with electronic elements: En route to bioelectronics. Trends Biotechnol. 2001, 19, 222–230. [Google Scholar] [CrossRef]
- Willner, I.; Baron, R.; Willner, B. Integrated nanoparticle–biomolecule systems for biosensing and bioelectronics. Biosens. Bioelectron. 2007, 22, 1841–1852. [Google Scholar] [CrossRef]
- Zhang, A.; Lieber, C.M. Nano-bioelectronics. Chem. Rev. 2016, 116, 215–257. [Google Scholar] [CrossRef] [Green Version]
- Stoeckenius, W.; Kunau, W.H. Further characterization of particulate fractions from lysed cell envelopes of Halobacterium halobium and isolation of gas vacuole membranes. J. Cell Biol. 1968, 38, 337–357. [Google Scholar] [CrossRef] [Green Version]
- Birge, R.R. Photophysics and molecular electronic applications of the rhodopsins. Annu. Rev. Phys. Chem. 1990, 41, 683–733. [Google Scholar] [CrossRef]
- Trissl, H.-W.; Montal, M. Electrical demonstration of rapid light-induced conformational changes in bacteriorhodopsin. Nature 1977, 266, 655–657. [Google Scholar] [CrossRef]
- Birge, R.R. A nonlinear proton pump. Nature 1994, 371, 659–660. [Google Scholar] [CrossRef]
- Drachev, L.; Kaulen, A.; Skulachev, V. Correlation of photochemical cycle, H+ release and uptake, and electric events in bacteriorhodopsin. FEBS Lett. 1984, 178, 331–335. [Google Scholar] [CrossRef] [Green Version]
- Edman, K.; Nollert, P.; Royant, A.; Belrhali, H.; Pebay-Peyroula, E.; Hajdu, J.; Neutze, R.; Landau, E.M. High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle. Nature 1999, 401, 822–826. [Google Scholar] [CrossRef] [PubMed]
- Han, B.-G.; Vonck, J.; Glaeser, R.M. The bacteriorhodopsin photocycle: Direct structural study of two substrates of the M-intermediate. Biophys. J. 1994, 67, 1179–1186. [Google Scholar] [CrossRef] [Green Version]
- Luecke, H.; Richter, H.-T.; Lanyi, J.K. Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution. Science 1998, 280, 1934–1937. [Google Scholar] [CrossRef] [Green Version]
- Oesterhelt, D.; Stoeckenius, W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat. New Biol. 1971, 233, 149–152. [Google Scholar] [CrossRef]
- Polland, H.-J.; Franz, M.; Zinth, W.; Kaiser, W.; Kölling, E.; Oesterhelt, D. Early picosecond events in the photocycle of bacteriorhodopsin. Biophys. J. 1986, 49, 651–662. [Google Scholar] [CrossRef] [Green Version]
- Shichida, Y.; Matuoka, S.; Hidaka, Y.; Yoshizawa, T. Absorption spectra of intermediates of bacteriorhodopsin measured by laser photolysis at room temperatures. Biochim. Biophys. Acta (BBA)-Bioenerg. 1983, 723, 240–246. [Google Scholar] [CrossRef]
- Ranaghan, M.J.; Shima, S.; Ramos, L.; Poulin, D.S.; Whited, G.; Rajasekaran, S.; Stuart, J.A.; Albert, A.D.; Birge, R.R. Photochemical and thermal stability of green and blue proteorhodopsins: Implications for protein-based bioelectronic devices. J. Phys. Chem. B 2010, 114, 14064–14070. [Google Scholar] [CrossRef] [Green Version]
- Brouillette, C.G.; McMichens, R.B.; Stern, L.J.; Khorana, H.G. Structure and thermal stability of monomeric bacteriorhodopsin in mixed pospholipid/detergent micelles. Proteins Struct. Funct. Bioinform. 1989, 5, 38–46. [Google Scholar] [CrossRef]
- Rao, S.; Guo, Z.; Liang, D.; Chen, D.; Wei, Y.; Xiang, Y. A proteorhodopsin-based biohybrid light-powering pH sensor. Phys. Chem. Chem. Phys. 2013, 15, 15821–15824. [Google Scholar] [CrossRef]
- Frydrych, M.; Silfsten, P.; Parkkinen, S.; Parkkinen, J.; Jaaskelainen, T. Color sensitive retina based on bacteriorhodopsin. Biosystems 2000, 54, 131–140. [Google Scholar] [CrossRef]
- Fischer, T.; Neebe, M.; Juchem, T.; Hampp, N.A. Biomolecular optical data storage and data encryption. IEEE Trans. Nanobiosci. 2003, 2, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Imhof, M.; Rhinow, D.; Hampp, N. Two-photon polarization data storage in bacteriorhodopsin films and its potential use in security applications. Appl. Phys. Lett. 2014, 104, 081921. [Google Scholar] [CrossRef]
- Yu, X.; Yao, B.; Lei, M.; Gao, P.; Ma, B. Femtosecond laser-induced permanent anisotropy in bacteriorhodopsin films and applications in optical data storage. J. Mod. Opt. 2013, 60, 309–314. [Google Scholar] [CrossRef]
- Allam, N.K.; Yen, C.-W.; Near, R.D.; El-Sayed, M.A. Bacteriorhodopsin/TiO 2 nanotube arrays hybrid system for enhanced photoelectrochemical water splitting. Energy Environ. Sci. 2011, 4, 2909–2914. [Google Scholar] [CrossRef]
- Lv, Y.; Yang, N.; Li, S.; Lu, S.; Xiang, Y. A novel light-driven pH-biosensor based on bacteriorhodopsin. Nano Energy 2019, 66, 104129. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Lin, C.-Y.; Chen, H.-M.; Kuo, L.-P.; Hsieh, C.-E.; Wang, X.-H.; Cheng, C.-W.; Wu, C.-Y.; Chen, Y.-S. Direct and label-free determination of human glycated hemoglobin levels using bacteriorhodopsin as the biosensor transducer. Sensors 2020, 20, 7274. [Google Scholar] [CrossRef]
- Partridge, M.; Korposh, S.; James, S.; Tatam, R. Long period grating sensors response to photosensitive bacteriorhodopsin coating. In Proceedings of the Fifth Asia-Pacific Optical Sensors Conference, Jeju, Korea, 20–22 May 2015; p. 965535. [Google Scholar]
- Srinivasan, K.; Thamilmaran, K.; Venkatesan, A. Effect of nonsinusoidal periodic forces in Duffing oscillator: Numerical and analog simulation studies. Chaos Solitons Fractals 2009, 40, 319–330. [Google Scholar] [CrossRef]
- Yuan, L.; Xiao, X.; Ding, T.; Zhong, J.; Zhang, X.; Shen, Y.; Hu, B.; Huang, Y.; Zhou, J.; Wang, Z.L. Paper-based supercapacitors for self-powered nanosystems. Angew. Chem. Int. Ed. 2012, 51, 4934–4938. [Google Scholar] [CrossRef]
- Rao, S.; Lu, S.; Guo, Z.; Li, Y.; Chen, D.; Xiang, Y. A Light-Powered Bio-Capacitor with Nanochannel Modulation. Adv. Mater. 2014, 26, 5846–5850. [Google Scholar] [CrossRef]
- Ashrafuzzaman, M.; Tuszynski, J.A. Membrane Biophysics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Gadsby, D.C. Ion channels versus ion pumps: The principal difference, in principle. Nat. Rev. Mol. Cell Biol. 2009, 10, 344–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gouaux, E.; MacKinnon, R. Principles of selective ion transport in channels and pumps. Science 2005, 310, 1461–1465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.; Cao, F.; Zheng, H.; Sheng, H.; Liu, C.; Liu, Y.; Zhao, D.; Wang, J. Fabrication of faceted nanopores in magnesium. Appl. Phys. Lett. 2013, 103, 243101. [Google Scholar] [CrossRef]
- Lanyi, J.K. Proton transfers in the bacteriorhodopsin photocycle. Biochim. Biophys. Acta (BBA)-Bioenerg. 2006, 1757, 1012–1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, J.; Lv, Y.-J.; Han, L.; Sun, K.; Xiang, Y.; Xing, X.-X.; Li, Y.-T. A Light-Driven Integrated Bio-Capacitor with Single Nano-Channel Modulation. Nanomaterials 2022, 12, 592. https://doi.org/10.3390/nano12040592
Lin J, Lv Y-J, Han L, Sun K, Xiang Y, Xing X-X, Li Y-T. A Light-Driven Integrated Bio-Capacitor with Single Nano-Channel Modulation. Nanomaterials. 2022; 12(4):592. https://doi.org/10.3390/nano12040592
Chicago/Turabian StyleLin, Jie, Yu-Jia Lv, Lei Han, Kuan Sun, Yan Xiang, Xiao-Xing Xing, and Yu-Tao Li. 2022. "A Light-Driven Integrated Bio-Capacitor with Single Nano-Channel Modulation" Nanomaterials 12, no. 4: 592. https://doi.org/10.3390/nano12040592
APA StyleLin, J., Lv, Y. -J., Han, L., Sun, K., Xiang, Y., Xing, X. -X., & Li, Y. -T. (2022). A Light-Driven Integrated Bio-Capacitor with Single Nano-Channel Modulation. Nanomaterials, 12(4), 592. https://doi.org/10.3390/nano12040592