Synthesis and Characterization of Silver-Gold Bimetallic Nanoparticles for Random Lasing
Abstract
:1. Introduction
2. Synthesis, Characterization and Optical Measurement
2.1. Synthesis of Silver Nanoparticles
2.2. Synthesis of Rough Silver-Gold Bimetallic Nanoparticles
2.3. Characterization of Bimetallic Nanoparticles Using Energy Dispersive X-ray Analysis (EDX)
2.4. Characterization of Bimetallic Nanoparticles Using Transmission Electron Microscopy (TEM) and Zetasizer
2.5. Optical Measurement
3. Results in Optics and Discussion
3.1. Absorption and Fluorescence Spectra of Samples
3.2. Random Laser Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, N.; Li, J.; Wang, S.; Zhuang, X.; Ni, S.; Luan, F.; Wu, X.; Yu, S. An Electrochemical Sensor Based on Gold and Bismuth Bimetallic Nanoparticles Decorated L-Cysteine Functionalized Graphene Oxide Nanocomposites for Sensitive Detection of Iron Ions in Water Samples. Nanomaterials 2021, 11, 2386. [Google Scholar] [CrossRef] [PubMed]
- Zhigarkov, V.; Volchkov, I.; Yusupov, V.; Chichkov, B. Metal Nanoparticles in Laser Bioprinting. Nanomaterials 2021, 11, 2584. [Google Scholar] [CrossRef]
- Meng, X.; Fujita, K.; Murai, S.; Matoba, T.; Tanaka, K. Plasmonically Controlled Lasing Resonance with Metallic−Dielectric Core−Shell Nanoparticles. Nano Lett. 2011, 11, 1374–1378. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Fujita, K.; Moriguchi, Y.; Zong, Y.; Tanaka, K. Metal-Dielectric Core-Shell Nanoparticles: Advanced Plasmonic Architectures Towards Multiple Control of Random Lasers. Adv. Opt. Mater. 2013, 1, 573–580. [Google Scholar] [CrossRef]
- Shi, X.; Wang, Y.; Wang, Z.; Sun, Y.; Liu, D.; Zhang, Y.; Li, Q.; Shi, J. High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires. Appl. Phys. Lett. 2013, 103, 23504. [Google Scholar] [CrossRef]
- Loza, K.; Heggen, M.; Epple, M. Synthesis, Structure, Properties, and Applications of Bimetallic Nanoparticles of Noble Metals. Adv. Funct. Mater. 2020, 30, 1909260. [Google Scholar] [CrossRef] [Green Version]
- Sznitko, L.; Cyprych, K.; Szukalski, A.; Miniewicz, A.; Mysliwiec, J. Coherent–incoherent random lasing based on nano-rubbing induced cavities. Laser Phys. Lett. 2014, 11, 045801. [Google Scholar] [CrossRef]
- Chen, Y.; Herrnsdorf, J.; Guilhabert, B.J.E.; Zhang, Y.; Watson, I.; Gu, E.; Laurand, N.; Dawson, M. Colloidal quantum dot random laser. Opt. Express 2011, 19, 2996–3003. [Google Scholar] [CrossRef]
- Shi, X.; Wang, Y.; Wang, Z.; Wei, S.; Sun, Y.; Liu, D.; Zhou, J.; Zhang, Y.; Shi, J. Random Lasing with a High Quality Factor over the Whole Visible Range Based on Cascade Energy Transfer. Adv. Opt. Mater. 2013, 2, 88–93. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, X.; Wei, S.; Sun, Y.; Wang, Y.; Zhou, J.; Shi, J.; Liu, D. Two-threshold silver nanowire-based random laser with different dye concentrations. Laser Phys. Lett. 2014, 11, 095002. [Google Scholar] [CrossRef]
- Rodríguez-Fernández, J.; Funston, A.M.; Pérez-Juste, J.; Álvarez-Puebla, R.A.; Liz-Marzán, L.M.; Mulvaney, P. The effect of surface roughness on the plasmonic response of individual sub-micron gold spheres. Phys. Chem. Chem. Phys. 2009, 11, 5909–5914. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Zhan, Y.; Liu, Q.; Hong, R.; Tao, C.; Wang, Q.; Lin, H.; Han, Z.; Zhang, D. Tunable surface plasmon resonance of Al-Cu bimetallic nanoparticles thin films induced by pulsed-laser. Appl. Surf. Sci. 2020, 540, 148397. [Google Scholar] [CrossRef]
- Debela, S.; Mesfin, B.; Senbeta, T. Surface plasmon resonances in ellipsoidal bimetallic nanoparticles. Photonics Nanostructures-Fundam. Appl. 2019, 33, 48–54. [Google Scholar] [CrossRef]
- Ge, K.; Guo, D.; Ma, X.; Xu, Z.; Hayat, A.; Li, S.; Zhai, T. Large-Area Biocompatible Random Laser for Wearable Applications. Nanomaterials 2021, 11, 1809. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Zhong, L.; Sun, J.; Jiang, L.; Cheng, G.J.; Chi, L. Tunable random lasing behavior in plasmonic nanostructures. Nano Converg. 2017, 4, 601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- La Spina, R.; Mehn, D.; Fumagalli, F.; Holland, M.; Reniero, F.; Rossi, F.; Gilliland, D. Synthesis of Citrate-Stabilized Silver Nanoparticles Modified by Thermal and pH Preconditioned Tannic Acid. Nanomaterials 2020, 10, 2031. [Google Scholar] [CrossRef]
- Au, L.; Lu, X.; Xia, Y. A Comparative Study of Galvanic Replacement Reactions Involving Ag Nanocubes and AuCl2−or AuCl4−. Adv. Mater. 2008, 20, 2517–2522. [Google Scholar] [CrossRef] [Green Version]
- Yi, J.; Feng, G.; Yang, L.; Yao, K.; Yang, C.; Song, Y.; Zhou, S. Behaviors of the Rh6G random laser comprising solvents and scatterers with different refractive indices. Opt. Commun. 2012, 285, 5276–5282. [Google Scholar] [CrossRef]
- Ismail, W.Z.W.; Hurot, C.; Dawes, J. Properties of Random Lasers in a hollow core photonic crystal fiber. Laser Phys. 2020, 30, 035002. [Google Scholar] [CrossRef]
- Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003, 107, 668–677. [Google Scholar] [CrossRef]
- Deng, W.; Jin, D.; Drozdowicz-Tomsia, K.; Yuan, J.; Wu, J.; Goldys, E.M. Ultrabright Eu-Doped Plasmonic Ag@SiO2 Nanostructures: Time-gated Bioprobes with Single Particle Sensitivity and Negligible Background. Adv. Mater. 2011, 23, 4649–4654. [Google Scholar] [CrossRef] [PubMed]
- Chee, S.W.; Tan, S.F.; Baraissov, Z.; Bosman, M.; Mirsaidov, U. Direct observation of the nanoscale Kirkendall effect during galvanic replacement reactions. Nat. Commun. 2017, 8, 1224. [Google Scholar] [CrossRef] [PubMed]
- Luan, F.; Gu, B.; Gomes, A.S.; Yong, K.-T.; Wen, S.; Prasad, P.N. Lasing in nanocomposite random media. Nano Today 2015, 10, 168–192. [Google Scholar] [CrossRef]
- Letokhov, V.S. Stimulated Emission of an Ensemble of Scattering Particles with Negative Absorption. J. Exp. Theor. Phys. Lett. 1967, 5, 212. [Google Scholar]
- Van De Hulst, H.C.; Twersky, V. Light Scattering by Small Particles; Dover Publications: New York, NY, USA, 1981. [Google Scholar]
- Meng, X.; Fujita, K.; Murai, S.; Tanaka, K. Coherent random lasers in weakly scattering polymer films containing silver nanoparticles. Phys. Rev. A At. Mol. Opt. Phys. 2009, 79, 053817. [Google Scholar] [CrossRef] [Green Version]
- Chýlek, P.; Zhan, J. Absorption and scattering of light by small particles: The interference structure. Appl. Opt. 1990, 29, 3984. [Google Scholar] [CrossRef] [PubMed]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Cox, A.J.; Deweerd, A.J.; Linden, J. An experiment to measure Mie and Rayleigh total scattering cross sections. Am. J. Phys. 2002, 70, 620–625. [Google Scholar] [CrossRef]
- Nakamura, T.; Sonoda, S.; Adachi, S. Plasmonic control of ZnO random lasing characteristics. Laser Phys. Lett. 2013, 11, 016004. [Google Scholar] [CrossRef]
- Scott, P. Mie Scattering Calculator. Available online: http://omlc.org/calc/mie_calc.html (accessed on 11 October 2021).
- Cao, H. Lasing in random media. Waves Random Media 2003, 13, R1–R39. [Google Scholar] [CrossRef]
- Ismail, W.Z.W.; Vo, T.P.; Goldys, E.M.; Dawes, J.M. Plasmonic enhancement of Rhodamine dye random lasers. Laser Phys. 2015, 25, 85001. [Google Scholar] [CrossRef]
- Kitur, J.; Zhu, G.; Bahoura, M.; Noginov, M.A. Dependence of the random laser behavior on the concentrations of dye and scatterers. J. Opt. 2010, 12, 024009. [Google Scholar] [CrossRef] [Green Version]
- Wiersma, D.S. The physics and applications of random lasers. Nat. Phys. 2008, 4, 359–367. [Google Scholar] [CrossRef]
- Shi, X.; Ge, K.; Tong, J.H.; Zhai, T. Low-cost biosensors based on a plasmonic random laser on fiber facet. Opt. Express 2020, 28, 12233–12242. [Google Scholar] [CrossRef] [PubMed]
- Toropov, N.; Cabello, G.; Serrano, M.P.; Gutha, R.R.; Rafti, M.; Vollmer, F. Review of biosensing with whispering-gallery mode lasers. Light. Sci. Appl. 2021, 10, 42. [Google Scholar] [CrossRef] [PubMed]
- Tong, J.; Shi, X.; Wang, Y.; Han, L.; Zhai, T. Flexible plasmonic random laser for wearable humidity sensing. Sci. China Inf. Sci. 2021, 64, 222401. [Google Scholar] [CrossRef]
- Kao, T.S.; Hong, Y.-H.; Hong, K.-B.; Lu, T.-C. Perovskite random lasers: A tunable coherent light source for emerging applications. Nanotechnology 2021, 32, 282001. [Google Scholar] [CrossRef] [PubMed]
Amount of HAuCl4 (μL) | Au Composition (wt %) |
---|---|
40 μL | 15 |
60 μL | 28 |
80 μL | 35 |
100 μL | 46 |
120 μL | 71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ismail, W.Z.W.; Dawes, J.M. Synthesis and Characterization of Silver-Gold Bimetallic Nanoparticles for Random Lasing. Nanomaterials 2022, 12, 607. https://doi.org/10.3390/nano12040607
Ismail WZW, Dawes JM. Synthesis and Characterization of Silver-Gold Bimetallic Nanoparticles for Random Lasing. Nanomaterials. 2022; 12(4):607. https://doi.org/10.3390/nano12040607
Chicago/Turabian StyleIsmail, Wan Zakiah Wan, and Judith M. Dawes. 2022. "Synthesis and Characterization of Silver-Gold Bimetallic Nanoparticles for Random Lasing" Nanomaterials 12, no. 4: 607. https://doi.org/10.3390/nano12040607
APA StyleIsmail, W. Z. W., & Dawes, J. M. (2022). Synthesis and Characterization of Silver-Gold Bimetallic Nanoparticles for Random Lasing. Nanomaterials, 12(4), 607. https://doi.org/10.3390/nano12040607